

Turtle: Innovative

Software for the Learning

of Computing Concepts

Peter J.R. Millican

The University of Leeds

School of Computing

Submitted in accordance with the requirements for the degree of

MSc by Research, February 2004. The candidate confirms that the

work submitted is his own and that appropriate credit has been given

where reference has been made to the work of others.

ii

iii

Contents
Figures and Illustrative Programs vi

Acknowledgements vii

Abstract viii

Chapter 1 Background, Aims, and Achievements 1

1.1 The Electives “Market” and its Needs 1

1.2 Why Turtle Graphics? 2

1.3 Why Turtle Graphics Pascal? 6

1.4 Why an Integrated Visual Compiler? 9

1.5 An Introduction to Computing Concepts 12

1.6 Outline of the Thesis 13

1.7 Achievements and Novel Contributions 15

Chapter 2 External Design 17

2.1 Getting Started 17

2.2 The System Menus 18

2.3 The Visual Compiler Displays 20

Chapter 3 The Turtle Graphics Pascal Source Language 23

3.1 Data Types 24

3.1.1 Numbers 24

3.1.2 Other Data Types 25

3.2 Arithmetical and Boolean Operators 26

3.3 Program Structures 26

3.4 Special Turtle Graphics Facilities 28

3.4.1 Turtle Graphics Instructions 28

3.4.2 Colour Handling 29

Chapter 4 Using Turtle to Teach Introductory Programming 31

4.1 Brief Outline of the Course 31

4.2 Students’ Perceptions of the Course 33

4.3 How Well Did the Students Learn? 36

4.4 Conclusion: The Value of Turtle as a Vehicle for Introducing Programming 40

iv

Chapter 5 The Virtual Turtle Machine and its “PCode” Object Language 44

5.1 Turtle Graphics Commands, the Program Stack,

 and Arithmetical/Boolean Operators 44

5.2 Command Parameters, Global Variables, and the Heap 47

5.3 PCode Sequential Structure and Flow Control 50

5.3.1 PCode Line Structure, Storage, and Sequencing 50

5.3.2 The Conditional “if … then” 51

5.3.3 The Iterative “repeat … until” 52

5.3.4 The Counting Loop “for … do” 52

Chapter 6 Turtle Machine Procedures 54

6.1 Procedure Calls, and the Return Stack 54

6.2 Local Variable Storage, the Heap Top Pointer, and Procedure Heap Pointers 55

6.3 Claiming and Releasing Heap Space; the Heap Control Stack 57

6.4 Dealing with Parameters 60

6.4.1 Value Parameters 60

6.4.2 Reference Parameters 61

6.5 The Procedure Register Stack 64

6.6 Putting Procedures Together 65

6.6.1 Note on the Trace Facility 69

6.7 Stack Variations on the Turtle Machine 70

6.7.1 Doing Without the Procedure Return Stack 72

6.7.2 Doing Without the Heap Control Stack 73

6.7.3 Doing Without the Procedure Register Stack 75

Chapter 7 The Turtle Compiler 76

7.1 Standard Compilation Subtasks 76

7.2 The Structure of the Turtle Compiler 78

7.3 Lexical Analysis and Screening 79

7.4 Parsing the Block Structure of the Program 81

7.4.1 Generation of Procedure Code 85

7.5 Parsing and Code Generation for Program Control Structures 86

7.6 Parsing and Code Generation for Individual Commands and Expressions 92

7.6.1 Code Generation for Commands and Procedure Calls 94

v

Chapter 8 Conclusion 96

8.1 The Value of Turtle as a Vehicle for Introducing Computing Concepts 96

8.1.1 Notional Machines 96

8.1.2 Deep Understanding 98

8.1.3 Automata Early 98

8.1.4 Familiar Compilation 99

8.2 Conclusion: The Achievements of this Work 99

References 101

Appendix A – Lecture Plans and Example Coursework 109

Plan for First Lecture on Turtle 109

Plan for Second Lecture on Turtle 110

Plan for Third Lecture on Turtle 111

Plan for Fourth Lecture on Turtle 112

Illustrative “Programming Concepts” Coursework 113

Appendix B – Possible Future Developments 117

The Editor 117

The Environment 118

The Language 118

The Compiler 119

The Illustrative Programs 119

Appendix C – Printout of Online Help File (numbered independently) i-iv, 1-61

vi

Figures and Illustrative Programs

Figures

Figure 1: Turtle running the “drawpause” illustrative program 17
Figure 2: Recursive triangles 20
Figure 3: PCode and Trace displays as the “triangles” program executes 20
Figure 4: Syntax Analysis Display (for “triangles” program) 21
Figure 5: Expressions Display (for “ballsteps” program) 21
Figure 6: Declarations Display (for “ballsteps” program) 22
(Coloured plates illustrating student work are inserted between pages 32 and 33)
Figure 7: The automated student feedback analysis program 33
Figure 8: Grade profile for the 1996-99 course teaching Borland Pascal 37
Figure 9: Grade profile for the 2000-03 course teaching Turtle Graphics Pascal 37
Figure 10: Overall heap structure, showing predefined global variables 48
Figure 11: Illustrative Heap structure while three procedures are active 57
Figure 12: Top of Heap before, and after, a procedure call 58
Figure 13: Top of Heap where procedure involves reference parameters 62
Figure 14: Part of the "Syntax" table 81
Figure 15: FSM states in the "Syntax" table 82
Figure 16: Finite State Machine to analyse the block structure of Pascal source code 83
Figure 17: Pushdown Automaton to analyse program control structures 87
Figure 18: PDA stack and indents in the "Syntax" table 90
Figure 19: Syntax diagrams for parsing by recursive descent 91

References to Turtle’s Built-In Illustrative Programs (excluding Appendix A)

drawpause “Simple drawing with pauses” 17, 47
forloops “FOR (counting) loop” 52-3
triangles “Recursion” 20-1, 42
ballsteps “Combining structures” 21-2, 26, 32
multibounce “Multiple bouncing balls” 32, 66
cyclecolours “Cycling colours” 26, 30, 49
flashlights “Using Booleans” 25, 30
balls3D “3-D effects with colour” 30
recursion “Recursion factory” 25

References to Other Illustrative Programs

randblots 51
concentric 52
randomdrift 65
pillars 71-5

vii

Acknowledgements

I am grateful to the School of Computing at the University of Leeds for

encouraging me in this project, and in particular, to Professors Graham Birtwistle (now

retired) and Roger Boyle for acting as my supervisor and providing useful feedback on

the draft of this thesis, as a result of which I believe it is substantially improved. I am

also very grateful to Dr Nick Efford, for helpful discussions on the teaching of compiler

design, and would like to express my special appreciation of Dr Willi Riha (now

retired), who taught me so much about programming at both a high and low level, and

inspired my interest in learning the fundamental computer science that informs this

thesis.

Many people have also given helpful comments on the system as it evolved,

including students and staff at the University of Leeds, but most especially Dr Sarah

Kattau, who produced additional teaching materials to accompany the course based on

this software, and in 2003 took over its teaching entirely. Her carefulness and attention

to detail picked up a number of issues both in the software and its documentation,

resulting in significant improvements.

I would like to end by expressing my deepest gratitude to my family for their moral

support, especially my wife Pauline who has generously tolerated, when necessary, my

spending far more time at the computer than is compatible with giving a fair

contribution to family life. Our children David, Katie and Jonathan have also helped by

playing with the system, bringing to light various ways of improving its appropriateness

for self-learning by young users, independently of any formal tuition.

viii

Abstract

The Turtle Graphics Programming System developed for this MSc (“Turtle” for

short) is designed to enable non-specialist students to learn a range of fundamental

concepts of programming and Computer Science in a straightforward but fairly

rigorous manner, within a user-friendly environment that makes the first steps as easy

as possible while providing scope for advanced experimentation. Chapter 1 explains

the overall form of the system – why it is based on Turtle Graphics, why it uses Pascal

source code, and why it incorporates a virtual machine and a self-contained compiler to

translate that source code into Turtle Machine “PCode”. The chapter ends with an

outline of the remainder of the thesis, and a list of what I take to be the project’s main

achievements and novel contributions.

Chapter 2 provides a quick tour around the finished system, including its “Visual

Compiler” displays that aim to make the Turtle Machine’s inner workings transparent.

Chapter 3 then explains in detail why its Pascal source language has the commands and

structures that it does, bearing in mind the system’s primary role as a learning system

for introductory programming. Chapter 4 reviews its actual performance in this role,

drawing on student feedback and assessments to establish its effectiveness.

Chapters 5 to 7 cover the system’s secondary role, of providing a vehicle for the

learning of fundamental concepts such as machine code, compilation, dynamic memory

management, automata, and stacks. Chapter 5 introduces the specially designed virtual

Turtle Machine and its basic operation. Chapter 6 takes this further into procedure

calls and dynamic memory management. Then Chapter 7 explains the detailed

operation of the Turtle compiler, designed in a modular fashion to provide a relatively

accessible way in to compiling and associated techniques (FSM, PDA, recursive

descent). In the absence of specific classroom experience to validate the effectiveness

of these aspects of the system, Chapters 5 to 7 have all been written in an expository

style intended to demonstrate, by example, the Turtle Machine’s simplicity of operation

and its appropriateness as a teaching tool. Finally Chapter 8 reflects on the system’s

overall value, suggesting surprisingly strong links between its two main roles, before

ending with a retrospective summary of the project’s achievements.

1

Chapter 1 Background, Aims,
and Achievements

1.1 The Electives “Market” and its Needs

Beginning students find it notoriously hard to learn basic programming concepts, as

testified both by the Computing Education literature (see §4.4 below) and by the many

intense and long-running discussions of the issue in schools of Computing. But if this is

a major problem with students who are already committed to specialist Computing

degrees – and who can therefore be expected to put in serious effort for considerable

amounts of time if necessary – then it is obviously even more of a difficulty (albeit less

grave in its implications) when the students concerned are on “elective” modules, with

no guaranteed formal background, limited time at their disposal, and no need to pass the

module in order to proceed with their degree programme.

One possible reaction to this difficulty would be to give up the attempt to teach

programming to elective students, but such a reaction would be very regrettable:

• Most non-Computing students will not have encountered programming before

entering university, and so may be interested in a “taster” course to see if it

appeals sufficiently to merit a change of degree programme (e.g. to include

“minor” Computing), or consideration as a possible future career.

• A basic mastery of programming concepts is genuinely useful even for those who

have no intention of pursuing a computing career, since the powerful modern

software systems that they are likely to encounter in the workplace (notably the

ubiquitous “Office” packages) provide considerable scope for customisation and

automation using “macros”, which can be made vastly more powerful if the user

understands, for example, the concept of a loop. The 1999 report from the

National Academy of Sciences Being Fluent with Information Technology [30]

goes even further, arguing on this sort of basis that programming is now “critical

to FITness” (section 3.1), though this conclusion is of course controversial (e.g.

Urban-Lurain and Weinshank [132] [133]).

2

• For students of many academic disciplines, there is value in acquiring an

understanding of algorithmic thinking quite independent of its potential practical

usefulness to them. Students of Philosophy, History and Philosophy of Science,

or Cultural Studies, for example, can thus gain an appreciation of a pervasive

modern mode of thinking that now profoundly influences our culture in radically

novel ways (cf. Dijkstra [39]). This influence is also significant in a vast range of

disciplines where algorithmic models are widely used, from social sciences such

as Economics, Political Theory and Psychology, to “hard” sciences such as

Biology and even fundamental Physics.1

• In some disciplines, algorithmic models are sufficiently accessible to provide

ways of learning about the domain by active development and experimentation

(Shafto [117], Harel and Papert [52], Lippert [76], cf. Guzdial [49]). A simple

Turtle Graphics example would be to give a Physics student the task of writing a

program to simulate the flight of cannonballs under gravity

So there are strong reasons for wishing to make basic programming concepts available

to non-specialist students. The main aim of the software described in this thesis was to

provide a way of doing so which could be engaging and “friendly” enough to interest a

high proportion of such students, whilst at the same time providing scope for those few

who wish to dig deeper to learn some more advanced concepts of computer science

(such as recursion, machine code, compilation, and memory models) in a

straightforward and approachable, but nevertheless suitably rigorous, context.

1.2 Why Turtle Graphics?

For students like those described above – whose other subjects demand the lion’s share

of their commitment and time, and with little academic motivation for programming

except in so far as they find the work interesting and enjoyable – it would be hard to find

a better starting-point than Seymour Papert’s idea of “Turtle Graphics”. Papert’s own

1 Of course the extent to which such models are appropriate is debatable in some of these cases,

perhaps most strikingly in Stephen Wolfram’s recent attempt to provoke an algorithmic revolution

within Physics through his book A New Type of Science [139].

3

famous and seminal discussion [97] provides a detailed and powerful case for this

conclusion on general educational grounds, based in part on Jean Piaget’s insights into

the theory of learning; here I shall be much briefer, and will not endorse Papert’s more

ambitious claims about the value of programming for the general development of

transferable problem-solving skills (cf. Pea [100], Mayer et al. [80], Kurland et al. [70],

Palumbo [94], Soloway [124], Urban-Lurain and Weinshank [132], [133]).2 But I will

add some additional considerations that bear particularly on the context of teaching

programming concepts to elective students in a university.

Piaget’s theory of human intellectual development, as presented in works such as

The Origin of Intelligence in the Child [103] and The Child’s Construction of Reality

 [104], has had a huge impact on modern educational practice, and also carries a number

of potentially significant implications for the learning of programming in particular. His

work has given rise to the educational theory of “constructivism”, whose central theme

is that knowledge must be constructed by the learner rather than taught by authorities or

read passively from the world.3 This theme has sometimes been taken to

epistemological extremes, as in idealist or postmodern rejections of the very possibility

of objective knowledge,4 but its dominant educational manifestation has been an

emphasis on student-centred learning. Boyle [15] usefully summarises the implications

under five headings, in the context of a discussion of learning environments for

computing. The first three headings are particularly relevant here:5

2 But as remarked earlier, programming can have wider educational value quite independently of

these concerns, where it is used as a vehicle for facilitating learning about other domains.

3 For a wide range of essays on constructivism and education assembled by the Maryland

Collaborative for Teacher Preparation, see www.towson.edu/csme/mctp/Essays.html.

4 Ben-Ari [12] outlines how an educational paradigm can impact on attitudes to ontology and

epistemology, as well as methodology and pedagogy. He then goes on to suggest how a more sober

constructivism can bring positive benefits to computer science education.

5 The last two are “Experience WITH the knowledge construction process” (i.e. learning how to

learn), and “Metacognition” (i.e. reflecting on one’s learning to generate more effective learning

strategies). Both of these involve higher-level educational goals which do not apply in the early stages.

4

(a) Authentic Learning Tasks: “… learning tasks should be embedded in problem

solving tasks that are relevant [to the learner]”.

(b) Interaction: “interaction is … the primary source material for the cognitive

constructions that people build to make sense of the world”. One particularly

influential approach, ultimately deriving from Vygotsky [134], is Cognitive

Apprenticeship theory, which “emphasises the active role of the teacher in

supporting the learner. … The teacher first provides a model of expert performance

in the task [and] actively coaches the learner in acquiring the target skills and

knowledge … then gradually removes this support forcing the learner to become

increasingly independent.” (Such a removable support is commonly referred to as

scaffolding within the educational literature.)

(c) Encourage Voice and Ownership in the Learning Process: “students should be

allowed to choose the problems they will work on [and] the teacher should serve as

a consultant to help students to generate problems which are relevant and

interesting to them”.

Turtle Graphics is an excellent exemplar of this paradigm, on all three criteria.6 First, it

replaces traditional number- or text-based programming exercises with creative

graphical design, something which is interesting and motivating to a far higher

proportion of students. Secondly, it provides a good vehicle for interactive learning,

precisely because the tasks it involves are ones that can easily be appreciated and

discussed; moreover a Turtle Graphics system – with a simplified environment and

built-in primitives designed to facilitate the creation of graphics – can itself serve as a

“scaffold” to develop the skills needed for more advanced systems. Finally, the

creativity implied by graphical design positively invites students to generate their own

ideas: our human visual imagination ensures that there is no difficulty whatever in

having an entire class all working on their own individual problems.

6 Along with Turtle Graphics, perhaps the best-known “microworld” approach to introductory

programming is that of Karel the Robot (Pattis [99]), which in particular gives an excellent basis for

learning about procedural abstraction. But Turtle Graphics scores better on these three criteria, in part

because it delivers an obvious graphical product rather than being focused primarily on a task.

5

In addition to these general constructivist considerations, there were a number of

more specific reasons for favouring Turtle Graphics in the context of this project:

• Turtle Graphics is simple and intuitive and hence easy to grasp, even for young

children, because it is based on a familiar type of metaphor (cf. Mayer [79],

Brusilovsky et al. [19], Pane and Myers [95] section 5.1). A “turtle” (which

need not be represented visually) moves around the screen, drawing as it goes,

and following straightforward English instructions such as “forward”, “left”,

“circle”, and “colour”. This metaphor is so straightforward as virtually to

guarantee that students will have no difficulty in understanding it.

• No doubt for obvious evolutionary reasons, humans find visual comprehension

far easier and more natural than (for example) mathematical, as testified by the

frequent use of visual language to describe our grasp even of abstract ideas.

With Turtle Graphics one can literally “see” the program working through its

stages, especially if it is possible to pause the processing at intermediate steps.7

• If a Turtle Graphics system makes provision for loops, then it is fairly easy to

learn how to use it to produce attractive patterns far more intricate than would

be feasible by hand. Hence such a system can appear “useful” even to students

who have no interest in computation or information processing as such.

• Although very straightforward, Turtle Graphics is not intrinsically limited. Both

novices and more advanced students can find a challenge within such a system,

because patterns of arbitrary complexity can be generated with more or less the

same simple tools as are used by beginners.

• When a Turtle Graphics program goes wrong, it is relatively easy to see where it

has gone wrong and in what way, thus greatly easing the pain of debugging.

• Likewise in Turtle Graphics it is quick and straightforward to test “what if”

scenarios, changing the program and identifying how the output has changed as a

result (McConnell [82] pp. 52-3 stresses the value of such “active learning”).

7 The virtues of using graphics to mediate the learning of programming are also stressed, with

supporting references and a brief survey, by Cooper, Dan et al. [31], [32], though Naps et al. [88] argue

that such benefits do not necessarily extend to visualisation of more abstract algorithms.

6

• Turtle Graphics gives ample scope for personal creativity, one of the greatest

satisfactions to be derived from programming, though largely closed off from

beginners in typical “training” situations (e.g. where they are set a fixed

information processing task). Not only is this enjoyable, but there is evidence

that “Arts” students in particular benefit educationally from the opportunity of

learning in a creative, “divergent” manner, rather than in the “linear” manner

which tends to characterise traditional data- or mathematically-oriented teaching

of programming (Hartley and Greggs [53], Nulty and Barrett [91]).

• Partly because Turtle Graphics lends itself so well to divergent, creative

development, it is relatively easy to structure a course around it that enables

learners to work at their own speed (cf. Liffick and Aiken [74], Moser [85]) and

which stresses “discovery” learning (cf. Baldwin [9]).

• Assessment of Turtle Graphics programs can take advantage of the marker’s

intuitive familiarity with visual patterns, and consequent ability for easy

recognition of the program’s behaviour and results. One consequence of this is

that creative graphics coursework not only greatly reduces the frequency of

plagiarism; it can also make plagiarism relatively simple to detect.

For all these reasons, I decided that my intended introductory programming module

should start with Turtle Graphics. But this still left open the difficult (and in other

contexts notoriously controversial) choice of programming language and “target”

development environment.

1.3 Why Turtle Graphics Pascal?

Turtle Graphics was developed by Papert in tandem with LOGO, his programming

language for children. This is in many ways an excellent and versatile language,

belonging to the LISP family, but due in part to its childish associations (and the fact

that in schools it is seldom exploited to anything like its potential), it suffers from low

esteem and “credibility”. This lack of credibility has presumably both contributed to,

and been exacerbated by, the language’s virtual invisibility in the commercial world.

7

Although the choice of language in a programming module designed for elective

students perhaps need not be so influenced by these sorts of concerns as in a module for

prospective computing professionals, there is little doubt that an introduction to

programming based on LOGO – whatever its educational merits – would have difficulty

attracting sufficient recruits to be viable. An elective programming module must balance

a number of factors, some of which tend to pull in opposite directions:

(a) Ease of learning by students who cannot be presumed to have a strong commitment

to mastering programming for career or academic progression.

(b) Quick results – early positive feedback so that right from the start a student can get

the satisfaction of visible progress (again a need which is greatly amplified by the

lack of presumed career commitment from these students).

(c) Minimisation of “debug frustration”, the common experience of beginning students

struggling with multiple syntax errors or manifestly incorrect output.

(d) Suitability for appropriate learning of both fundamental concepts and software

disciplines (to pave the way for any students who ultimately decide to continue with

Computing through, say, a major/minor programme).

(e) Perceived “usefulness”, so that even those students who do no more programming

beyond this introductory module will feel that they have learned something of

practical value to them.

Obviously it is (very) arguable which programming language and environment best

satisfy these sorts of criteria (see for example Jarc [60], Brilliant and Wiseman [17],

Cantù [25], Trott [130], Hadjerroult [50], Warford [135], Callear [22], Smyth [123],

Burton and Bruhn [21], and Jenkins [63]), but at the time of developing the module I

took the view that the optimal combination was to teach Pascal with a view to Borland’s

Delphi development environment for Windows.8

8 There would now be good reason to consider an alternative solution based on Java syntax, given

that language’s commercial value and general prominence in an Internet-aware culture, its capacity to

provide immediate perceived “usefulness” through Web applets, and the (free) availability of highly-

regarded environments such as BlueJ which themselves exploit graphics and visualisation to facilitate

further learning. See Appendix B for some discussion of possible future developments in this direction.

8

Briefly, the reasons for this decision were as follows. First, it is widely accepted

that Pascal’s syntax is significantly easier for beginners to read and understand than that

of C++ or Java (probably in part because its control structures are more verbose, cf.

Sime et al. [118]); moreover I had nearly a decade’s experience of teaching

Turbo/Borland Pascal, which gave me a high opinion of the system’s learnability and

robustness, notably error messages that are relatively unconfusing (criteria a and c).

Secondly, as regards rigour and appropriateness for software engineering (criterion d),

Pascal seemed preferable to Visual Basic, which was another obvious contender on

grounds of initial simplicity and “credibility” (moreover Green et al. [46] found that

syntactically, Pascal is easier than Basic for beginners to parse in what they term the

“parsing-gnisrap” cycle where new “chunks” are inserted into existing code). Visual

Basic would also have implied commitment to a specific proprietary platform (notably

Microsoft Windows and its variants), and although Windows was indeed the obvious

default platform to use given the target audience of the module (on grounds of

familiarity, availability, ease, and perceived “usefulness” to them – criteria a and e), it

was a significant virtue of Delphi that plans were afoot to port it to Unix, soon to result

in the Kylix system (since 2001).

Choice of Delphi, however, left the problem of initial learning and the need for

quick results (criterion b). Delphi is a complex environment, and I remember myself

finding the initial sight of it somewhat daunting, despite all my prior programming

experience. Even provision of a “Turtle Graphics” unit within Delphi would not help

much to overcome the problem that attempting to initiate novice students both into the

language and the environment at the same time might well prove overwhelming.9 So

the ideal approach seemed to be to separate their initial learning of the Pascal language

from their learning of the Delphi environment. Hence the need for a self-standing

environment that could support an introduction to Pascal with an emphasis on Turtle

Graphics, but with sufficient sophistication that it could prepare the students for a

9 I was confident, however, that using Turtle Graphics as a bridge into the Pascal language itself

would work smoothly, since I had personal experience of using a simple custom-written “unit” in this

way when teaching Turbo Pascal to elective students in 1994/95.

9

relatively easy initiation into Delphi, and also preferably enable the more proficient

students to “stretch themselves” even prior to this initiation.

1.4 Why an Integrated Visual Compiler?

The idea of using Turtle Graphics to introduce algorithmic thinking to novice

programmers has proved extremely popular over recent years, and there are any number

of such systems to be found on the Web and referenced in the Computer Science

teaching literature. Dedicated environments, however, tend to be almost exclusively

based around the language LOGO,10 because Turtle Graphics systems focused on the

learning of other languages (such as C++, Delphi, Java, or Visual Basic) are usually

provided as mere “units” or “classes” within a standard programming environment.11

The closest approximation I have found to the sort of system envisaged in this project,

which became available recently (albeit only in a beta version that lacks a user manual

and most of the planned “lessons”), is Otherwise Software’s Jurtle for Java.12 Though a

commercial system, this is evidently targeted for the educational market, being user-

friendly, reasonably priced, and also provided in an unlicenced version that allows

temporary trial of the product.

10 See for example the LOGO Foundation website at http://el.media.mit.edu/logo-

foundation/logo/.

11 A Web search can very quickly find, for example the GrWin Graphics Library for Fortran and

C/C++; the turtle classes in Donovan [40] for C++; and the many Turtle Graphics Windows

components on various Delphi and Visual Basic freeware and shareware sites. Turtle Graphics is now

enjoying something of a resurgence in the teaching of introductory Java, as for example in Martin [77],

Caspersen and Christensen [26], Schaub [116], Slack [120], and Ariga and Tsuiki [7]. This emphasis

on early graphics is presumably fostered by Java’s association with Web applets, but unfortunately its

standard stateless “redraw every time” mechanism imposes limitations on a turtle-style system. Roberts

and Picard [109] and Bruce et al. [18] have therefore developed alternative approaches which, though

somewhat inspired by Turtle Graphics, are based instead around the idea of persisting graphical objects

with their own internal state.

12 See www.otherwise.com/Jurtle.html. Another system which may be of a similar type (since it is

described as “a graphics environment” but requires an external compiler) is Sparkling Light Software’s

10

Jurtle requires prior installation of the standard Sun JDK (Java Development Kit),

and integrates nicely with it: once the location of the Java compiler has been set within

Jurtle, it hands over control seamlessly when necessary, and displays the appropriate

compiler messages within the programming environment. The problem is that these

messages are not designed to be suitable for a novice, so as soon as things start to go

wrong, such a user is likely to feel overwhelmed and intimidated. Here, as a very mild

example, is the message given when the word “forward” is misspelt within “BoxTurtle”,

one of the simplest illustrative programs provided:

C:\Program Files\Jurtle\Examples\BoxTurtle.java:19: cannot resolve symbol

symbol : method forwad (int)

location: class BoxTurtle

 forwad(size.height - 40);

 ^

1 error

Far worse, however, is what happens if the user happens to omit the “{” which follows

the line “public void runTurtle()” within this same program. Not only is there no correct

diagnosis of the error (the first error message given refers to a missing semicolon rather

than a missing brace), but also, the messages run to well over 100 lines, with no fewer

than 38 errors identified in what is a very short program!

This particular type of problem would not have been quite so serious in a system

based on the Delphi compiler, which generally gives very helpful error messages, but

even if it had been possible to overcome the accompanying complexity of the Delphi

context (cf. §1.3 above), the same fundamental issue would remain, that messages

appropriate to the expert programmer – and therefore typically generated by any

“industrial strength” standalone compiler – will often be unsuitable or unhelpful for the

novice. It was clear, therefore, that the envisaged Turtle Graphics Programming System

would have to provide its own syntactic error handling.

Turtlebox system for C++, though given the characteristics of that language and its compilers, this

seems less likely to be suitable for novice programmers.

11

The very first version of the Turtle system, which was piloted in a self-standing

three-week “option” course that made no claim to lead on to higher things, did not

incorporate a compiler, but made do instead with a relatively superficial interpreter.

This proved sufficiently successful (e.g. in respect of student results and feedback) to

give confidence in the overall approach, but the lack of full syntax analysis somewhat

restricted the complexity of programming constructs that were permissible, and made it

extremely difficult to generate appropriate error messages for all syntactic failures.

Moreover the system made no provision for procedures (an absolute essential if it was

to act as a pathway into Delphi) or, consequently, for recursion, greatly limiting both its

scope for genuinely stimulating experimentation and also its potential as an introduction

to any programming concepts beyond the most basic.

Having established that a fundamental redesign of the pilot system’s internal

operation would be required for further progress, it seemed an obvious next step to

make a virtue of necessity, and develop the system not only as an introduction to the

craft of programming, but also to the concepts of programming language systems such

as compilation, machine code, and dynamic memory management. Having come

through the route of assembler programming myself, I find it regrettable (albeit very

understandable) that as the realm of applications has expanded, this fundamental aspect

of the discipline has tended increasingly to be pushed out of modern syllabuses, so that

even many specialist programming students today remain virtually ignorant of the

underlying mechanisms (with consequent detriment to their understanding of other

areas, for example data structures and complexity theory). Hence my decision to

develop this system around a virtual “Turtle Machine” with its own “machine code” into

which the user’s Pascal programs would be compiled, and giving visual access to the

results of that compilation, both static and dynamic.

This decision made Pascal a particularly good choice of language in yet another

respect, since Pascal was designed in part with ease of compilation in mind (e.g. Jensen

and Wirth [65], p. 8), making it feasible to develop a compiler whose operations would

be accessible even to non-specialist students. Unfortunately, however, the original type

of Pascal “P-code” developed by Niklaus Wirth, the designer of the Pascal language,

was too complex to provide a plausible basis for such teaching (see for example

Wichmann [136], Bell and Wichmann [11], and Pemberton and Daniels [101] ch. 10).

12

So it was necessary to design and develop a new type of Turtle Machine, with as simple

a design as possible, yet adequate to support a wide enough range of programming

constructs to meet the various educational aims outlined above.

1.5 An Introduction to Computing Concepts

The upshot of all this was that the Turtle system ended up as something rather broader

than originally envisaged. Having begun life as a vehicle for introducing only basic

programming concepts, it became also a potential aid to exploration of the broader

context of programming languages within Computer Science, and a means of developing

a practical understanding of a wide range of relevant concepts such as:

• high- and low-level languages, machine and assembler code;

• the concept of a stack, and its value in computer architecture;

• subroutine calling, return addresses, “stack frames” etc.;

• heap structures and dynamic variable management;

• parameter passing mechanisms, “call by reference” and “call by value”;

• finite state machines and pushdown automata, and their value in parsing;

• recursion, and its application in recursive descent parsing.

Many of these are particular hard to grasp in the abstract, but perhaps their concrete and

transparent use within the Turtle Machine may prove of value in helping students to

learn them.13 The system has not yet been used for teaching at this level, but I hope

before long to develop materials to support such use.

13 It is a common observation, reinforced by Piaget, that concrete understanding develops far

earlier in life than abstract, and is typically far easier to acquire at any stage of development. Hazzan

 [55], for example, drawing on parallels with research in mathematics education, gives a range of

examples where students are assisted in learning computer science concepts by “reducing abstraction”.

Hence it is not unrealistic to expect that studying a concrete realisation of such concepts would make

them easier to learn, even taking into account the overhead of understanding the concrete model.

13

1.6 Outline of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 provides a very quick

tour of the Turtle system from the user’s point of view. Then Chapters 3 and 4 together

cover use of the system for introducing programming to novices, with the former

focusing on the choice of programming language structures and commands, and the

latter on practical experience of three years’ teaching using the system (or its earlier

prototype). Chapter 4’s conclusion effectively sums up the first half of the thesis,

reflecting on the overall value of the Turtle system in the learning and teaching of

introductory programming.

Chapters 5 to 7 then turn from introductory programming to the Turtle virtual

machine, its “PCode” (virtual machine code), and its compiler. Chapter 5 explains the

general design of the Turtle Machine, and the way in which Turtle Graphics commands

and simple Pascal control structures can be represented within PCode. Chapter 6 builds

on this to tackle the far more complex subject of procedures, digging deeper into the

Turtle Machine to show how Pascal procedures can be handled by it, including recursion

and parameter calling methods. Finally, Chapter 7 explains the workings of the Turtle

compiler, which translates the user’s Pascal source code into equivalently functioning

Turtle PCode, in conformity with the design explained in the previous two chapters.

It is important to note that Chapters 5 to 7 are deliberately written in a more

discursive manner than might be expected in a typical thesis, because their role is not

only to explain the system’s design, but also, crucially, to illustrate how that design can

be put across in a way that would be relatively accessible to a non-expert in Computer

Science. These aspects of the Turtle system have not yet been used in practice to teach

the concepts of machine code or compilation, but the system is intended to provide a

basis for doing so. In the absence of such road-testing, the best way of demonstrating

the system’s potential for the task is to manifest by example how it can indeed serve as a

vehicle for explanation at roughly the appropriate level.14

14 However if used for teaching the system would be supplemented by additional materials such as

definitions of the relevant abstract machines and data structures, which are clearly not necessary here.

14

Chapter 8 concludes the thesis, starting by drawing together the threads of the

previous chapters to reflect on the system’s value in the learning and teaching of

Computer Science (complementing the exclusive emphasis on novice programming

which was the theme of Chapter 4’s conclusion). It ends by summing up the project’s

achievements, with reference to §1.7 below.

Appendix A contains the lecture plans and coursework used when teaching the

Turtle system in Leeds University, Appendix B collects together some ideas for future

development, and Appendix C contains the entire contents of the system’s online Help

file, with independent page numbering (and cross-references to those page numbers

replacing the online hyperlinks to facilitate use in printed form).

The Turtle system itself, which includes both the software and the online Help file,

is available from www.leeds.ac.uk/jcom/turtle/.

15

1.7 Achievements and Novel Contributions

My initial aim in this project was to produce a tool for a job, namely, to enhance the

teaching of introductory programming, and I had no particular focus on creating

something novel for its own sake. However both my studies at the time and subsequent

reviews of the literature have confirmed that the Turtle system does indeed represent a

genuine innovation, not so much in the technologies that it builds on, but rather, in the

way that these technologies are combined and presented. The main achievements and

novel contributions represented by this work are, I believe, as follows:

(A1) To provide a strong case for the development of an integrated

programming environment for novices (and non-Computing students in

particular), combining standard programming structures, simple graphics

primitives, comprehensive help facilities, and a standalone user-friendly

compiler. (Case presented in §1.1 – §1.4, supplemented in §4.4)

(A2) To select a suitable subset of the Pascal language, combining overall

simplicity with considerable graphical and algorithmic power, suitable to

pave the way for graduation to Delphi. (Discussion in Chapter 3)

(A3) To design, program and progressively enhance a powerful, robust, and

attractive programming environment, conforming to the requirements

implied by (A1) and (A2), a system which has proved in practice its

suitability for the innovative and effective teaching of novices. (System

illustrated in Chapter 2, and evidence of its practical value given in

Chapter 4)

(A4) To design a virtual Turtle Machine capable of supporting the language

commands and structures implied by (A2) – including dynamic memory

management, dual parameter call methods, and recursion – and yet

sufficiently simple to be potentially comprehensible to a non-specialist

student after a relatively modest investment of effort. (Virtual machine

described in Chapters 5 and 6, which also aim to demonstrate by example

how its behaviour can be explained at a relatively simple level)

16

(A5) To design a compiler from the Pascal source code (A2) to the Turtle

Machine’s PCode (A4), operating by methods that are sufficiently simple

to be explained without presupposing any significant prior knowledge of

formal language or machine theory, and sufficiently general that they can

provide a practical introduction into the wider uses of abstract machines

and compilation techniques. (Compiler described in Chapter 7, its

operation divided into three levels each of which is sufficiently

manageable that its overall behaviour can be summarised in a single one-

page diagram, and which serve respectively to introduce finite state

machines, pushdown automata, and recursive descent.)

(A6) To incorporate into the programming environment a visual interface to the

operations of the virtual machine and compiler, to enhance the system’s

value as an introduction to Computing concepts. (Visual Compiler

displays introduced in §2.3, and also illustrated in §§7.3-5; overall value

of the system in this capacity discussed in Chapter 8)

17

Chapter 2 External Design

The external design of the Turtle Graphics Programming System can most efficiently be

conveyed by means of a quick “guided tour” through its main facilities, so this chapter

will accordingly be devoted to such a tour. For simplicity, it is written as addressed to a

user who has a computer running with the Turtle system installed.

2.1 Getting Started

To start up Turtle, navigate to the appropriate directory (here presumed to be

C:\Turtle) and run the program turtle.exe. To load an illustrative program, go

to the Help menu and move the mouse down to the “Illustrative programs” item; then

click on the first program in the list, named “Simple drawing with pauses”. When the

program appears, click on the “RUN” button just to the right of the menu:

Figure 1: Turtle running the “drawpause” illustrative program

As shown in the picture above, the left-hand section of the screen is the Programming

Area which incorporates a simple editor, while the right-hand section is the “Canvas” on

18

which graphics are created by the drawing “statements” in the program.15 The syntax of

the program is essentially that of Pascal, except that the system includes built-in drawing

procedures, some of which are common to virtually all Turtle Graphics implementations

(e.g. “forward”, “right”), though others are specially provided to take advantage of this

system’s particular facilities (e.g. “blot”, “pause”).16 The Help file contains a detailed

walk-through of this particular program in its third section, entitled “The Program”; this

can be consulted if further details of the syntax or the relevant instructions are required.

2.2 The System Menus

Again the Help file contains a full description of the various system menus (in the six

sections entitled “File menu”, “Edit menu”, “Layout menu”, “Compile menu”, “Options

menu”, and “Help menu”), and there is no need to discuss them in detail here. However

the following summary may prove helpful for drawing attention to some of the system’s

more distinctive aspects:

• The File menu provides typical Windows-style facilities for clearing, loading,

and saving the program (standardly as a text file with extension tgp), and for

transferring images drawn on the Canvas (as bitmaps) either to the Windows

Clipboard or to a disk file.

15 Pascal commands are formally called “statements”, a convention mostly followed here. The

words “instruction” and “command” will generally be reserved for referring to PCode; where the

distinction matters, “instruction” is used to mean a PCode (or Turtle Pascal) primitive, and “command”

a particular instance of an instruction together with its arguments.

16 The original Turtle Graphics philosophy, as exemplified by Papert’s discussion [97] mentioned

earlier in §1.2, is to include as few primitives as possible, encouraging students to build up for

themselves more complex instructions (e.g. “circle”) as procedures based on the simple primitives such

as “forward” and “right” (this approach is also shared by Karel the Robot [99]). The current system

departs from this philosophy, in order to provide students with more immediately satisfying feedback

from their programming efforts (e.g. by simplifying the construction of complex patterns, and

increasing the efficiency of circle and “blot” drawing to facilitate reasonably fast real-time movement).

See §3.4.1 below for more on this.

19

• The Edit menu again largely follows the typical Windows pattern, providing an

“undo”/“redo” facility (which remembers up to 100 steps) and four simple

operations involving the Windows Clipboard (which can therefore be used for

transferring text into and out of the program editor, e.g. from the Help system or

into a text file). Program line indentation controls are also provided, including

most notably an “auto-formatter”, which can if desired impose standard

capitalisation and appropriate indentation on any legal program (and is thus

particularly useful for a teaching context, to encourage students to keep their

program code neatly structured).

• The Layout menu provides two possible choices for the Canvas dimensions

(especially useful for beginning students who find their program drawing beyond

the standard boundaries, but have not yet encountered the “canvas” instruction).

It also gives various options for screen layout and font choice, which can be

particularly helpful if the system is being run on the minimum 800x600 resolution

screen.

• The Compile menu gives access to the various “machine code” and memory

analysis facilities described below in §2.3, and also provides a method of running

or halting the program independently of the “RUN” button.

• Most of the settings in the Options menu concern various automatic

operations, enabling the system to be configured so that programs are processed

immediately on loading (by compiling, running, and/or auto-formatting), the

Canvas either cleared or preserved when a new program is run, and the auto-

formatter’s behaviour controlled. The various configuration settings (which

prove particularly valuable when processing large quantities of student

assessments) can also be saved for future use, or set as defaults.

• The Help menu provides direct access to various sections of the Help file, and

also to a number of illustrative programs that are built into the system.

20

2.3 The Visual Compiler Displays

To see the Visual Compiler at work, first use the Help

menu to select the built-in illustrative “triangles”

program (labelled “Recursion” in the menu), and click

on “RUN”. The program will generate the recursive

pattern shown here (with eight levels of triangles of

successively halved dimensions), but note that while it

executes the “RUN” button changes to “HALT”: you

can click on this at any time to terminate it manually.

Manual termination is particularly important if the trace facility is operative; to

enable this, select “Trace on run” from the Compile menu, which automatically selects

also the “Analysis tables” setting, making visible a set of “tab controls” along the bottom

of the Canvas. Now again click on “RUN”, then “HALT” the program after a few

seconds, and click on the tab control labelled “PCode”:

Figure 3: PCode and Trace displays as the “triangles” program executes

Figure 2: Recursive triangles

21

The “PCode” table here shows the “assembler code” into which the triangles program

has been compiled; the instructions can also be shown as purely numeric “machine

code” by clicking on one of the left-hand radio buttons above the table. The lower table

is the trace display, which will appear only if the trace facility is operative. This shows

the assembler commands that have actually been executed while the program was

running, together with their parameters. It also shows the momentary state, just prior to

each command’s execution, of the various program “flags”, the Heap Top Pointer

(showing the extent of variable storage) and Procedure Register (showing which

procedure is in progress, and how many procedures are active), and also the resulting

state – immediately after the command has been performed – of the top three locations

on the Program Stack (which stores the parameters of the various instructions and

operators as these are executed, cf. §5.1 and note 47 in §6.7).

Three other displays are also provided through the bottom tab controls:

• A syntax analysis, including details of

lexical divisions and also the finite state

machine and pushdown automaton used

to parse the Pascal program

(cf. §§7.3-5), together with the

corresponding indentation calculations

for the Edit menu’s auto-indent facility;

• An “expressions” analysis, tallying the

various types of statement that have

been used, grouped together by category

and referenced by line number – this is

particularly useful for marking student

assignments that may require them to

demonstrate competence with an

appropriate range of commands (as with

the coursework in Appendix A);

• A list of “declarations”, showing both Figure 5: Expressions Display

Figure 4: Syntax Analysis Display

Figure 6: Declarations Display

22

the variables and the procedures that have been defined within the program,

together with their scope and the corresponding ranges of Pascal and PCode

instructions. For each variable, the type and calling method are also shown, and

for each procedure, the parent routine, parameter count and heap storage

requirements.17

For a discussion of the design of the virtual “Turtle Machine” and its “PCode”, see

Chapters 5 and 6 below. For details on the operation of the compiler, see Chapter 7.

 We now proceed to explore the system’s use as a vehicle for the learning and

teaching of introductory programming, focusing first (in Chapter 3) on its Turtle

Graphics Pascal source language, and then moving on (in Chapter 4) to see how it has

performed in practice within taught modules at the University of Leeds.

17 In Figure 6, like Figure 5, the “ballsteps” illustrative program is used, since this gives a more

interesting display than the “triangles” program used in Figure 4.

23

Chapter 3 The Turtle Graphics
Pascal Source Language

The idea of starting students on a simplified subset of a programming language is very

familiar from the educational literature.18 Sometimes the emphasis here is on self-

contained “mini-languages” such as that used by Karel the Robot [99] (see also the

discussion by Brusilovsky et al. [19]), and sometimes on progressive introduction of

more structures within a standard language, extending the relevant subset as the students

develop (e.g. Brusilovsky et al. [20], DePasquale [36]). However given Turtle’s first

intended role as an introduction to programming concepts for total beginners, designed

to lead on to the far more sophisticated Delphi environment after only four lectures, it

was clearly sensible to choose a subset of Pascal (rather than any specially invented

language), and to fix that subset with initial learning in mind rather than to attempt to

cater for the students’ later development. Far better that they should achieve genuine

competence (and confidence) with a small number of types, structures, commands etc.,

than that they should run any risk of being confused at this early stage by the niceties of

distinctions in meaning and usage between a variety of syntactic options.19

The same point applies to some extent to the system’s role as a vehicle for

introducing more advanced concepts of compilation. There would be little point, from

this perspective, in providing a variety of control structures that are compiled in much

the same way (e.g. “repeat” and “while”), since this would add complexity without

widening the conceptual repertoire. More potential benefit would come from adding a

greater range of types and data structures (e.g. reals, strings, enumerations, sets, arrays,

records, objects), methods of access (e.g. pointers), and subroutines (e.g. functions,

methods, units), since these would involve significant extensions to the machine

18 In addition to the references in the text, see for example du Boulay [41], du Boulay et al. [42],

and Motil and Epstein [86].

19 Lewis and Olson [72] identify abundance of low-level primitives as a major cognitive barrier to

programming, while Eisenberg et al. [43] found confusions arising particularly where novices were

presented with a variety of syntactic structures to achieve a similar effect.

24

processes and compiler techniques that the system could be used to illustrate. However

such extensions would have taken more time than was available in this project, and their

implementation is anyway perhaps best postponed until practical experience has been

gained of the system’s use in teaching computing concepts and relatively basic

compilation, to enable more reliable judgements to be made as to whether additional

system complexity is likely to carry too great a cost in comprehensibility and

accessibility.

3.1 Data Types

3.1.1 Numbers

Any Turtle Graphics system must make use of numbers, most obviously to specify

lengths or angles, and here integers are indispensable. They are simpler to handle than

real numbers, more efficient both in respect of storage and processing speed, but also

they are precise, enabling conditional tests for equality to be performed on them without

having to worry about rounding inaccuracies. Related to this is the fact that integers can

be divided precisely into bytes, and thus conveniently used for representing a wide range

of colours in the standard “24-bit” manner, as explained in §3.4.2 below.20 The question

still arises, however, whether any other numeric types should be permitted within the

system. A case could be made both for real numbers, notably to enable greater accuracy

in recording fractional coordinates within intricate recursive patterns, and also for bytes,

to reflect the limited range of the virtual “machine code” instructions. The latter case is,

however, rather weak, because the arguments to these instructions (e.g. representing

lengths and angles) anyway have to be integers, and the overall aim of simplicity

therefore implies a preference for treating the basic “machine code” unit as being an

integer in general, even if the instructions themselves are limited to a single byte. The

case for real numbers is somewhat stronger, but by no means decisive, because

limitations of fractional co-ordinate accuracy are unlikely to be much of an issue within

20 As implemented, Turtle uses four-byte integers, following the Delphi standard. Moreover the

PCode display allows integers to be shown in hexadecimal, so that byte values can be distinguished.

25

the programs produced by beginners, while more advanced programmers can

straightforwardly mitigate them if necessary by adjusting the Canvas dimensions, and by

saving and restoring coordinates at appropriate places (as illustrated by the built-in

“Recursion factory” program). Given also the decision to use integers as the “machine

code” unit, the complications of introducing real numbers seem to outweigh any

benefits. Hence only integer numbers are accepted within the system.

3.1.2 Other Data Types

Turtle implicitly uses Boolean values in conditional and iterative structures (e.g. after

“if” and “until”), but in common with many other systems, represents these as integers,

thus avoiding the need for type distinctions within the Program Stack. FALSE is

represented as 0, and TRUE as −1,21 though any non-zero value will be treated as

TRUE in conditional processing. Turtle also explicitly recognises the “boolean” type

(e.g. in procedure or variable declarations – as shown in the “flashlights” illustrative

program), which can be helpful for explaining and motivating type declarations in a

system where otherwise these might seem to be pointless.22

No other data types are recognised, because integers and Booleans suffice for the

fundamental concepts necessary to the system’s practical teaching role (as a preparation

for Delphi), though there is something to be said for introducing arrays in particular, not

only to provide more conceptual range and power for users, but also to develop the

possibility that the Visual Compiler provides for the practical illustration of complexity

considerations (e.g. by enabling “machine code” cycles to be counted within sorting

algorithms). Another natural suggestion would be to move in the direction of object-

21 −1 is a more appropriate choice than 1 because the four-byte “twos-complement” hexadecimal

representation of −1 is FFFFFFFF, which equals the bitwise NOT(0), cf. §3.2 below.

22 Turtle could do with further development here, since there is currently no type compatibility

checking between Booleans and integers, and hence little benefit to be gained from declaring variables

or procedure parameters as “boolean” rather than “integer”. However in practice, students taught using

the system have moved on to Delphi before detailed discussion of types has become appropriate, so it

26

orientation, with “turtles” as objects and therefore potentially multiple (cf. Appendix B

below).

3.2 Arithmetical and Boolean Operators

The four basic arithmetical operators (“+”, “–”, “*”, “/”) are accommodated, though “/”

is interpreted as integer division (i.e. “div”) given that reals are not permitted. The

inclusion of the complementary operator “mod” is obviously desirable too, playing a

particularly valuable role in the creation of alternating patterns (as exemplified in the

illustrative programs “Combining structures” and “Cycling colours”).

The arithmetical comparison operators (“=”, “<>”, “<”, “>”, “<=”, “>=”) are

likewise included, yielding the “boolean” values −1 (true) or 0 (false) as in §3.1.2 above.

Use of these values enables the Boolean operators “not”, “and”, “or” and “xor” to be

incorporated as bitwise arithmetical operators also, without ambiguity, since thus

interpreted the Boolean and arithmetical results correspond (the point here being that

the “twos-complement” binary representation of −1 has all bits set).

3.3 Program Structures

Clearly the basic conditional structure “if … then … else” is essential, and is sufficiently

general to make “case” unnecessary. More delicate is the choice of conditional iterative

structure between Pascal’s “repeat … until” and “while”: both are similarly expressive

(in combination with “if … then … else”), so only one of them is required within a

system whose primary aim is simplicity. In some respects “while” is preferable, since in

technical programming situations, initial non-satisfaction of a loop condition typically

implies total non-performance of the loop. However in Turtle Graphics “null” loops are

relatively rare, and personal experience indicates that beginners tend to find the idea of a

loop that is always performed at least once rather more intuitive, perhaps because it is

easier to think of repeating an operation already concretely performed than to think of a

has sufficed to use the mere possibility of Booleans to illustrate how variable types can differ, and hence

to explain why more advanced systems such as Delphi require type declarations.

27

loop that is entirely conditional (see Soloway et al. [125], Rogalski and Samurçay

 [112]). There is also a more particular confusion about the Pascal “while” statement

deriving from its natural language meaning, leading some novices to expect that the loop

condition will be tested continuously rather than once per iteration (Sleeman et al. [121],

Bonar and Soloway [13]). Finally, when sequences of operations are involved (as is

usually the case when drawing repeated patterns) the “repeat … until” construct in

Pascal is syntactically far easier than “while … do begin … end”, since “repeat” and

“until” already provide the necessary bracketing. For all these reasons, “repeat … until”

has been preferred to “while”.

Given the provision of “if … then … else” and “repeat … until”, there is no strict

need for the counting iterative structure “for … do”. However this is so useful in

situations where an exact number of iterations is required, and so helpful and relatively

natural for introducing the concept of a counting variable, that there is very good reason

to include it.

Finally, any system that aspires to teach good programming practice must make

provision for modular divisions of the program, and given the intention of using Turtle

as a bridge to Delphi, procedures are absolutely essential (since Delphi methods take

this form). Procedures if properly implemented should also permit recursion (for which

a graphics system can provide a wonderful introduction) and – in combination with

Pascal’s distinction between “call by value” and “call by reference” parameters – enable

results to be returned and hence the effective definition of functions. Such quasi-

functions lack the syntactic convenience of literal functions,23 but contexts in which this

is a major issue seem unlikely to arise within introductory Turtle Graphics. For the sake

of simplicity, therefore, and to motivate the use (and hence learning) of these parameter

distinctions, Turtle does not incorporate literal “functions” as such.24

23 For example a function “dist” that calculates the distance between coordinates permits the

elegant syntax “if dist(x1,y1,x2,y2) > 100 then …”, whereas the same condition requires two statements

if the distance is instead returned as the “VAR” parameter to a procedure.

24 Arguably the importance of functions is such that they ought to be included nonetheless, an

argument that is likely to become decisive if Turtle is extended to other source languages.

28

3.4 Special Turtle Graphics Facilities

3.4.1 Turtle Graphics Instructions

In accordance with the purposes of the system, Turtle’s graphics primitives (all of which

are explained in the online Help file) have been selected with the aim of making it easy

to produce interesting and satisfying patterns, while at the same time avoiding

unnecessary complexity. “Complexity” here is partly a psychological matter – for

example the provision of both “forward” and “back” makes it psychologically simpler to

produce movement in two opposite directions, though logically it would be more

economical to provide only the single instruction “forward”, which can be used with

either a positive or a negative parameter (a similar point applies to “left” and “right”).

The same principle of psychological ease requires inclusion of the “circle” and “blot”

(i.e. filled circle) commands, even though in Seymour Papert’s original conception of

Turtle Graphics, “circle” is available only as a defined rather than as a primitive

instruction (see note 16 in §2.1 above). Again, “thickness” is presumably theoretically

dispensable (since one could draw multiple adjacent lines, each of width 1), but its

provision obviously makes life much simpler.

Most other Turtle Graphics primitives involve no such potential redundancy, and

are designed straightforwardly to extend its graphics capabilities. The “colour”

instruction is obviously required; “randcol” less so, though it greatly facilitates the

creation of visually striking patterns by novice programmers. The four instructions

“home”, “setx”, “sety”, and “setxy” provide absolute movement (as do operations

involving the global coordinate variables “turtx” and “turty”, provided together with the

direction, colour, and thickness variables “turtd”, “turtc” and “turtt”); note that “home”

here is not redundant, because the home position is dependent on the Canvas dimensions

and so does not involve specific coordinate settings.25 (A similar point applies to the

25 However “setx”, “sety”, and “setxy” do involve some redundancy, e.g. “setx(100)” is equivalent

to (though psychologically simpler than) “setxy(100,turty)”. Educationally it is convenient to introduce

simple x- and y-coordinate setting commands before students have been taught about the relevant global

variables; then “setxy” serves as a useful shorthand when both x- and y-coordinates are to be set.

29

“blank” instruction, which is not equivalent to any specific rectangle filling “polygon”

command.) None of these four absolute movement commands involves drawing,

whereas “forward” and “back” are sensitive in this respect to the state of the pen,

controlled by “penup” and “pendown”. Such sensitivity also applies to “drawxy”, but

not to “movexy”, both of which provide relative movement.26

The remaining Turtle primitives are “canvas” (to set the Canvas dimensions

dynamically), “pause” (invaluable for simple debugging as well as visual effects),

“update” and “noupdate” (which are needed only to mitigate the display speed

limitations of computer hardware), and the related group of “polyline”, “polygon”,

“remember”, and “forget” – these last four give a great deal of power and obviate the

need for more specific polygon-drawing or -filling routines. In contrast with the case of

“circle”, note that there is no compelling argument here for dedicated “triangle”,

“square”, or “rectangle” procedures (etc.), because the versatile “polyline” and

“polygon” commands do not involve any increased psychological complexity:

identifying a square by visiting its corners in turn is no less natural, but is significantly

more generalisable, than specifying its coordinates within a dedicated routine.

3.4.2 Colour Handling

Turtle allows “24-bit” colours to be specified, following the Delphi convention of giving

the three components in “BGR” order within a hexadecimal number (prefixed by “$”).

Thus “colour($0080FF)” will create an orange, with zero intensity of blue, 128 of green,

and 255 of red. However for compatibility with the widespread HTML convention,

Turtle also allows these colours to be specified in “RGB” order, prefixed by “#”, e.g.

“colour(#FF8000)”. 24-bit colouration allows very fine variation, which can be used to

produce “3D” shadowing effects (as in the built-in “balls3D” illustrative program).

For introductory teaching purposes it is important to be able to access the basic

colours more simply, and therefore eight predefined colour constants have also been

26 Again without redundancy, since if “movexy” were to be defined as “penup” followed by

“drawxy”, then the state of the pen would be affected, whereas “movexy” leaves it unchanged.

30

provided, namely blue, green, cyan, red, magenta, yellow, white, and black. Each of

these constants is precisely equivalent to the corresponding BGR integer – hence

“colour(red)”, for example, has the same effect as “colour($FF)” or “colour(255)”.

Further special provision is needed to facilitate such things as multi-colour counting

loops (used to cycle colours in the “cyclecolours” illustrative program). For this

purpose, the numbers 1 to 8 (which following the BGR convention would all appear

more or less jet black, with no blue or green and only a minimal intensity of red) are

specially distinguished as not following that convention; instead, they represent the

eight standard colours, in the order listed above (this order being derived from the

traditional Turtle Graphics ordering). It is these special codes that are randomly chosen

by the “randcol” command, and this also has the virtue of enabling “randcol” to be used

as a simple random number generator (as shown in two of the illustrative programs:

“Cycling colours” and “Using Booleans”)

Having now examined the Pascal language structures that are supported by the

Turtle system, we shall see in Chapter 4 how it has performed as a vehicle for

introducing this limited language within elective modules at the University of Leeds

(where it has served as a prelude to Delphi Pascal).

31

Chapter 4 Using Turtle to Teach
Introductory Programming

The Turtle system is designed primarily as a learning rather than a teaching system, in

that it aims to encourage students to experiment and thus discover for themselves the

creative pleasure of programming, in particular by working through the self-teaching

exercises. But it has been used since 2000 to introduce programming within formal

taught modules for elective students, and since 2001 as the basis for the “Programming

Concepts” core of a full 10-credit module which then led on to Delphi programming.

So it is appropriate here to review this experience with the system, before going on to a

wider discussion of its place within the educational curriculum

4.1 Brief Outline of the Course

The “Programming Concepts” component consists of four compulsory lectures followed

by a final optional lecture which gives a tour of the Visual Compiler. Full lecture plans

for the compulsory lectures, together with an example coursework, are provided in

Appendix A. The lectures are built almost entirely around the exercises provided in the

Turtle Help file, and in that sense resemble example classes rather than typical formal

lectures.

1. The first lecture introduces the Turtle system and the idea of an algorithm, running through

simple drawing commands and using the opportunities afforded by the first two exercises to

familiarise students with relevant illustrative programs, help resources, and other Turtle

facilities that they might find useful.

2. The second lecture builds on the first, quickly reviewing what it covered and then moving on

to introduce the idea of a variable and of a counting loop, combining these with a discussion

of program layout, systematic program development, and debugging techniques (e.g. using

pauses and “blot” markers).

3. The third lecture is focused on procedures, emphasising the importance of modularity to

enhance comprehensibility and going on to show the amazing power of recursion though a

simple “triangle” example which is explained using the metaphor of the “Cat in the Hat”,

32

with recursive calls being introduced one at a time until the picture shown in Figure 2

(p. 20) is produced. The built-in “Recursion Factory” program invites the students to

experiment for themselves with recursive patterns of real complexity and aesthetic interest.

4. The fourth lecture introduces repeat loops in the context of producing animated graphics,

such as the “bouncing balls” effect in two of the illustrative programs (“ballsteps” and

“multibounce”). The remaining illustrative programs are also briefly reviewed, to give the

students ideas that they can follow up for themselves in their coursework.

The coursework, assigned at the end of the fourth lecture, is designed primarily as a

learning rather than an assessment exercise, to give confidence in elementary

programming through pleasurable exploration and creativity. Accordingly, students are

given free rein to write a graphical program of their choice, and are encouraged to make

it entertaining. To ensure appropriate coverage they are required to use a wide range of

Turtle commands and program constructs, but the work is not difficult, and even timid

students can safely get through it with support – though the main focus of such support

is enabling them to help themselves by making use of the Turtle system’s built-in

resources (notably the illustrative programs and the Help file). In addition to their main

program, students are also asked to produce two short illustrative programs of their

own, each designed to highlight the features of a different language construct. The

intention of this exercise is to give them a relatively concrete task to start on while

working out their ideas, to encourage them to reflect on the use of program structures,

and to extend their coursework without requiring them to put all their eggs in the one

basket of their main program. It also brings the benefit of giving insight into students’

perception of the structures in question, and can provide useful additional illustrative

resources to benefit future cohorts.

The next four pages show examples of the students’ work (labelled and arranged to

correspond with their organisation on the Turtle website), though virtually every one of

these programs involved animation, and the pictures show only a snapshot – or in some

cases two – of what were in many cases amusing programs. It is very clear that the

Turtle system both entertained these students and inspired them creatively.

33

4.2 Students’ Perceptions of the Course

As discussed in §1.2 above, the primary aim of the course is to introduce novice

students to programming in an engaging and non-threatening manner, preparing the

ground for more “serious” programming in follow-on courses. For this reason, student

perception is the most important single criterion by which the course must be judged,

and accordingly, anonymous feedback was sought systematically through a specially

written program which invited students to express their views immediately after having

submitted their coursework. (Similar feedback was also solicited for all other

components in the ACOM teaching programme, enabling comparisons to be drawn.) To

maximise the chance that all students would indeed express their views as fully as

possible, the feedback interface was divided in two, the first simply asking them to click

on “radio” buttons to give an overall appraisal, and the second inviting more detailed

opinions. As a result, the feedback response rate for the first part was extremely high

(typically 75% to nearly 100%, depending on the question), but only around one in six

of the students – apparently disproportionately those with the stronger opinions – also

Figure 7: The automated student feedback analysis program

34

took advantage of the second part to emphasise specific points. The feedback was

analysed using a Feedback Reporter program, which broadly mirrored the structure of

the students’ feedback interface (see Figure 7).

In assessing this student feedback, most weight must be put on the overall appraisal

“radio button” responses, because they are so much more representative than the written

comments. Over the three sessions in question, the results were as follows, averaging

each question’s responses on a scale that ranges from 100% (for the most positive

available answer) to 0% (for the most negative):

 2000-
2001

2001-
2002

2002-
2003

(ACOM
Norm)

The lectures were well structured and organised 87.0% 84.3% 85.7% (70%)

The lecturer was always clear and audible 90.0% 88.4% 89.3% (70%)

The lecturer made good use of examples etc. – 86.8% 89.3% (70%)

The lecturer made things easier to understand – 81.7% 79.8% (66%)

The lecturer helped to make things interesting – 83.4% 86.9% (62%)

The lecturer seemed responsive and approachable 89.0% 85.8% 90.5% (67%)

The coursework was well designed and appropriate 83.8% 82.9% 76.8% (67%)

I feel this work has taught me useful skills 81.0% 78.0% 75.6% (73%)

The lecture handouts (or booklet) were very helpful 90.0% 84.1% 83.9% (72%)

It is apparent that these are extremely positive results, and this impression is confirmed

when they are compared against the overall responses for the 27 highly varied

components that have been delivered within the ACOM “IT Skills” programme over the

period, which have averaged around the approximate figures shown in the last column.

Even though the ACOM programme as a whole is seen as extremely successful with

students, “Programming Concepts” has consistently come at the top of its feedback

league. Only one of the other 26 components has ever exceeded it over this time,

namely the small option “IT, Politics and Society”, and that only in 2002-03.

Although the students’ written feedback must be viewed with considerable caution,

because of its unsystematic and unrepresentative nature, it gratifyingly conforms very

35

well with the positive impression given by the overall statistics above, with many

comments expressing positive enjoyment of the learning experience:

• I found this by far the most enjoyable thing I have done in ACOM so far!
• I found this to be a very tough, yet very enjoyable module. With practice, all of the concepts

become clear and the results are very satisfying. I thought Peter Millican’s teaching was
excellent.

• The online Turtle Graphics help was very helpful.
• Handouts weren't really necessary as all of the necessary information was contained within the

program itself. I found myself quite keen on doing the exercises and coursework but this may
have been because it gave me a break from my other homework. A good programming starter
program.

• I found this core both stimulating and enjoyable. Peter Millican's approach to teaching
programming makes the subject less mind-boggling.

• Very well structured and well taught – Peter made it very easy to understand the concepts of
the programming language being taught.

• A superb introduction to computer programming; I'd recommend it to anyone from the very
young to the very old. Peter Millican's performance of “The Cat in the Hat”, to elucidate
recursion, just has to be seen to be believed; it ought to be filmed and distributed to all
programming students everywhere.

• Being able to download "Turtle Graphics" to use on my computer was very useful.
• It was REALLY useful to have small exercises set each week. It helped to consolidate the

material covered in the lectures and it was good to be able to try out specific tasks to make sure
that you weren't having any problems with the work. Overall the lectures were brilliant, the
best lectures I've ever been to!!

• The only difficult aspect of this coursework was formulating an idea for a program for which
we could apply the relevant programming. Apart from this, the course was excellent.

• It was a pleasant and not very daunting introduction to programming.
• I found this part of the module very enjoyable and very useful.
• I really enjoyed doing this, but I sat down and worked it all out for myself rather than reading

the notes. The lecturer was very helpful and seemed really enthusiastic about the work
himself.

• Enjoyed it. Turtle Graphics could be easier if it had a grid on the page so you could always
see where you are

• I thought the course was very interesting and quite challenging. I thought the turtle graphics
program was very helpful as the introduction to programming as there was visible results so
you felt like you were actually achieving something.

• I enjoyed the 'cat in the hat' analogy to recursion. Though it did seem somewhat silly, it did
help to clarify the idea of recursion.

• The Programming Core was a fun and interesting one
• very interesting
• It was a very good module, thanks.
• Programming was a new experience for me but one I have enjoyed despite it being so time

consuming, I look forward to pursuing more programming options later in my university life.
• Turtle graphics’ in-built help and examples were extremely useful. I found I learnt a lot just by

playing around with the illustrative programs. The lectures were also very useful, well
explained and relevant. Happy customer!

• Would have been interesting to study the applications of recursion in greater detail, as this was
a fascinating area of the course. Many thanks.

• I thought this was a great set of lectures. I found them useful, interesting, and thoroughly
enjoyable.

36

Of the total of 38 comments provided over 2000-2002, 30 were clearly positive and only

3 negative, with one of these expressing uncertainty over what the coursework was

really looking for, and the others concerning the availability of demonstrators. Other

comments included suggestions for the course, namely that more time should be spent

on basic mathematics, repeat loops, or procedures and parameters, and three

recommendations for improvements to the Turtle system itself, namely, inclusion of a

visual grid, making the “Are you sure?” quitting prompt more selective, and adding

keyboard shortcuts. The last two of these suggestions have since been acted on.

4.3 How Well Did the Students Learn?

As explained above in §4.1, the coursework required students to produce three

programs, the longest of which was expected to use each of a fair range of commands

and structures. (The required range, together with a tally for the last-compiled program,

can be seen in the “Expressions” table in the Visual Compiler display, shown on p. 21 –

this was available to students to check their work, and proved invaluable for markers.)

To do even moderately well, students had to exhibit reasonable competence with a

number of programming constructs, and to put these together within a coherent

program of their own design. Moreover because their programs were all so visibly

distinctive, and were often evidently objects of pride and enjoyment (as manifest from

the coloured plates), there was little temptation or opportunity for students to copy from

others, except in the unlikely event that one of them effectively did the coursework

twice over. Hence one can be fairly confident that those students who passed the

module had at least mastered some of the basic skills of programming, such as linking

sequences of commands together, dividing code into procedures, iterating with counting

and repeat loops, and using simple conditionals.

Given this background, it is gratifying how few students failed to reach a pass

standard in their coursework – over the sessions 2000-2003, only 5.9% were graded less

than 40. To put this in perspective, the nearest comparator available within Leeds

University is the module COMP1150, “Introduction to Programming on the PC”, which

ran as an elective for a similar range of students between 1993 and 1999, also teaching

Pascal. Obviously over the last decade there has been considerable change, not only in

computer systems and staff teaching allocations, but perhaps even more so in the typical

37

profile of a Leeds student (more IT literate but arguably less “elite”, mathematically

weaker, and more used to “spoon-feeding”), so such comparisons must be viewed with

some caution. But if we focus on the last three years of COMP1150, over which period

it was taught by two different lecturers with a single package – namely Borland Pascal

for Windows – the contrast with the Turtle Graphics course (also taught by two

different lecturers over the relevant period) is very striking:

Figure 8: Grade profile for the 1996-99 course teaching Borland Pascal

Figure 9: Grade profile for the 2000-03 course teaching Turtle Graphics Pascal

Borland Pascal for Windows 1996-99

0%

5%

10%

15%

20%

20
-2

2

23
-2

5

26
-2

9

30
-3

2

33
-3

6

37
-3

9

40
-4

2

43
-4

5

46
-4

9

50
-5

2

53
-5

5

56
-5

9

60
-6

2

63
-6

5

66
-6

9

70
-7

2

73
-7

5

76
-7

9

80
-8

2

83
-8

5

86
-9

0
Turtle Graphics Pascal 2000-03

0%

5%

10%

15%

20%

20
-2

2

23
-2

5

26
-2

9

30
-3

2

33
-3

6

37
-3

9

40
-4

2

43
-4

5

46
-4

9

50
-5

2

53
-5

5

56
-5

9

60
-6

2

63
-6

5

66
-6

9

70
-7

2

73
-7

5

76
-7

9

80
-8

2

83
-8

5

86
-9

0

38

The peak in the Borland Pascal “37-39” column actually represents pass grades, because

prior to 2000 the Leeds pass threshold was 37.27 However the peak itself occurs

because students are limited to a bare pass on resitting, so the fact remains that many of

these students initially failed.

The detailed figures are shown in the table below. Particularly notable is that on

the earlier course, 27.8% of students scored below 40, and of these, 17.6% below

Borland Pascal

for Windows
1996-1999

Turtle Graphics
Programming

2000-2003

Number Average Number Average
205 55.05 307 61.05

20-22 2.9% 20-22 1.0%
23-25 2.9% 23-25 0.3%
26-29 3.9% 26-29 0.7%
30-32 1.5% 30-32 0.7%
33-36 6.3% 33-36 2.0%
37-39 10.2% 37-39 1.3%
40-42 2.9% 40-42 2.0%
43-45 3.9% 43-45 2.9%
46-49 6.3% 46-49 5.2%
50-52 3.9% 50-52 6.2%
53-55 5.9% 53-55 1.6%
56-59 4.9% 56-59 13.4%
60-62 6.3% 60-62 13.0%
63-65 5.9% 63-65 12.7%
66-69 7.8% 66-69 13.7%
70-72 4.4% 70-72 12.1%
73-75 4.4% 73-75 4.6%
76-79 2.0% 76-79 3.6%
80-82 5.4% 80-82 2.3%
83-85 2.4% 83-85 1.0%
86-90 5.9% 86-90 0.0%

37, whereas on the Turtle Graphics

course, these figures reduced to 6.0%

and 4.7% respectively. But any

suspicion that the contrast between the

grade profiles might have resulted from

a crude “dumbing down” is easily

dispelled by looking at the other end of

the scale, where on the Borland Pascal

course 13.7% scored over 80, while the

corresponding figure for Turtle

Graphics was only 3.3%. As this

indicates, the later course was in some

ways rather more demanding than its

predecessor, involving additional

“advanced” concepts such as recursion.

The crucial difference between the two

was apparently that Turtle made it far

easier for students to get started.

Again, it must be emphasised that this teaching did not take place in the context of a

controlled study or systematic comparisons with other courses, so conclusions regarding

27 This is why the grouping in the 30’s takes the form “30-32”, “33-36” and “37-39”. Within the

40’s (and likewise for the other “decades”) it more appropriate to use the grouping “40-42”, “43-45”

and “46-49”, because of all these grades, 49 is by far the least used.

39

the effectiveness of the Turtle system must be to that extent tentative. Potential

complicating factors include the following:

• Those taking the introductory programming component were self-selecting elective students,

free to drop out or switch options had they so chosen, and this might be expected to reduce

the “tail” of failures characteristic of compulsory programming courses. However this does

nothing to impugn the favourable comparison with the 1996-99 Borland Pascal course,

which was also entirely optional.28

• Turtle covered only the first four weeks of programming, enabling students to get by without

having to handle seriously complex programs. However this point should be taken in the

context of §4.4 below, which highlights evidence that fundamental student difficulties occur

at a very early stage of understanding, so an introductory component arguably faces a task

which is harder, rather than easier, compared to later components. Moreover the programs

produced on the Turtle component were not in any case particularly simple – many extended

to several hundred lines and numerous procedures (though admittedly they were simple in

terms of data structures and techniques).

• Turtle was taught by two members of staff who were individually very committed to the

system, including its developer (the other was Dr Sarah Kattau, who has contributed

teaching materials for Turtle and been its most assiduous tester). Moreover both teachers

have scored well in other teaching, implying that the good results and feedback in the

programming component might have been due at least in part to their general teaching

abilities and their specific enthusiasm for Turtle.29 This concern probably has an element of

truth, but it risks putting the cart before the horse, because part of what makes an effective

teacher is the ability to identify and develop effective tools and methods. If Turtle is seen by

teachers elsewhere as a useful tool, there is no evident reason why it should not inspire them

and their students with comparable enthusiasm to that which in Leeds has led to such

promising results.

28 Indeed if anything this makes the comparison more favourable, since the earlier course was an

integrated module, making early dropouts far more likely than in the Turtle component where students

were not anyway committed to continuing with programming beyond the first four weeks.

29 A sort of “Hawthorne Effect” (Mayo [81], ch. 3) might be suspected here, whereby the mere act

of studying students’ performance can serve to improve it, but in fact this supposed phenomenon is

considered rather dubious in the light of later studies (e.g. Parsons [98], Adair [2]), and besides, the

Turtle component – with its self-learning materials – put very little emphasis on student monitoring.

40

4.4 Conclusion: The Value of Turtle as a Vehicle for
Introducing Programming

Clearly the Turtle system’s ambitions in respect of introducing novices to programming

are very limited – it aims to provide a good basis for the first month or so of learning,

and makes no attempt to convey software engineering principles of any sophistication.

Turtle’s value must accordingly be measured against this limited ambition, and by that

standard the evidence given above strongly suggests that it is a success. Not only do

novice students cope with it (and many choose to go on to more “serious” programming

in Delphi,30 generally with success), but they are excited and enthused at discovering for

themselves the pleasure of intellectual creativity. Here I would suggest a strong

similarity between the potential appeal of programming and that of playing chess, as

famously expressed by the great Siegbert Tarrasch in the preface to his last book, The

Game of Chess:

 Chess is a form of intellectual productiveness, therein lies its peculiar charm. Intellectual

productiveness is one of the greatest joys – if not the greatest one – of human existence. It is not

everyone who can write a play, or build a bridge, or even make a good joke. But in chess everyone

can, everyone must, be intellectually productive, and so can share in this select delight. I have

always a slight feeling of pity for the man who has no knowledge of chess, just as I would pity the

man who has remained ignorant of love. Chess, like love, like music, has the power to make men

happy.

If playing with Turtle can harness some of this power, then the benefits may be

considerable.

Scepticism about the value of this approach is most likely to be prompted by the

thought that Turtle is just a “toy” system, far too simple to be of significant use for

introducing real programming. But such scepticism is hard to maintain when faced with

30 I have not included statistics from the two Delphi courses that followed on from the Turtle-

based “Programming Concepts” core, partly for reasons of space but also because they were optional,

making comparison with previous modules problematic. In practice, the vast majority of students have

passed, with an overall average around 56-60, and feedback has been very positive (mostly 75%-85%).

41

evidence of how badly many students fare when taught programming in a traditional

manner. Thus McCracken et al. [83] highlight “concerns expressed by many computer

science educators about their students’ lack of programming skills … often … focused

on basic mastery of fundamental skills”, and give supporting references together with

research indicating that such concerns are fully warranted. In the abstracts to two recent

papers, Chalk et al. [28] and Jenkins [61] both give considerable prominence to a

depressing assessment of the current situation: “There is a national crisis in the teaching

and learning of programming” and “The graduating student who professes a complete

inability to write the simplest program is commonplace”. Likewise according to Jenkins

and Davy [64], many students “appear to be totally unable to grasp the basic concepts”,

leading them later in their studies to “insist that they want to avoid programming at all

costs”.31

But what is particularly striking about all this is the level of expertise at which the

students concerned are faltering, as shown by a wide variety of studies.32 Variable

assignment and initialisation are often misunderstood (du Boulay [41], Samurçay [114]),

while particularly common bugs are those associated with loops (du Boulay [41],

Spohrer et al. [128]) and conditionals (Sleeman et al. [121], Hoc [56], Putnam et al.

 [107]), and general difficulties with tracing flow of control (Perkins et al. [102],

Rogalski and Samurçay [112]) – precisely the sorts of problems that might be alleviated

if students spent time experimenting with systems of this type.33 In the context of such

problems with flow of control, it is hardly surprising that recursion is widely viewed as

31 Many more references could easily be given, for example Shackelford and Badre [115], and

those in Deek [34] and in the first paragraph of Sims-Knight [119]. For consideration of why

programming is so difficult, see e.g. Guzdial [49], Jenkins [62], Moser [85] and the references they cite.

32 Two useful reviews of such studies are provided by Winslow [138] and Robins et al. [111].

33 Here I focus on Turtle’s role as a vehicle for introductory program development and execution,

but we shall see later (in §8.1.1) that it has another role which can help in dealing with these problems.

There is considerable evidence that students’ problems with control structures derive in large part from

an inability to conceive an appropriate model of the computer’s behaviour (see for example the reviews

by Pane and Myers [95], pp. 30, 32; Robins et al. [111], pp. 149-53). Turtle is distinctive amongst

introductory programming systems in incorporating an explicit virtual machine which is designed to

enable even non-specialist users (though admittedly not total novices) to establish such a mental model.

42

an extremely difficult topic (e.g. Dicheva and Close [38], Kahney [66], Kessler and

Anderson [68], Levy [71]). Yet the Turtle system, for all its relative simplicity, can very

effectively convey an understanding of recursion, sufficient at least to persuade most of

a novice class that they grasp it after only three lectures.34

Even if the level of understanding conveyed by experimenting with Turtle were

relatively modest, the very fact that it can give students confidence and enjoyment is

itself of potentially major significance. Robins et al. ([111], p. 158) summarise research

by Linn and Dalby [75] and Kurland et al. [70] in words that could serve as a manifesto

for the type of graphics-based self-learning system that Turtle exemplifies:

The reinforcement and encouragement derived from creating a working program can be very

powerful. In this context students can work and learn on their own and at their own pace, and

programming can be a rich source of problem-solving experience. Working on easily accessible

tasks, especially programs with graphical and animated output, can be stimulating and motivating

for students.

They also report a survey by Rountree et al. [113] as indicating that for novice students,

“the most reliable indicator of success was the grade that the student expected to

achieve” (p. 155). Obviously it can be debated here which factor was cause and which

effect, but Jenkins [61] argues that a student’s expectation of success is crucial to its

achievement, since such expectation impacts so directly on student motivation – drawing

on Keller [67], he suggests that motivation can be thought of as the multiplicative

product of expectancy and the perceived value of success. Such a view would strongly

support the use of any system, however modest, that can increase students’ enjoyment

and confidence and introduce programming in a positive manner.

A related virtue of the Turtle style of learning is that students, as their confidence

grows, are strongly motivated to enhance their own designs, adding features to

graphically interesting programs that evince evident pride and satisfaction. Hence from

34 At the end of each year’s third Turtle lecture, most students have raised their hands when asked

to indicate whether they understand the “triangles” example (§2.3). Obviously this does not prove that

they have a deep and secure understanding, but it is surely significant that this much can be achieved

with novices less than an hour after they have first acquired the concept of a procedure.

43

simple beginnings, students characteristically end up developing programs of significant

complexity, and thus encounter at an early stage the typical problems of design and plan

composition that seem to underlie so many of the difficulties that beset inexperienced

programmers (including many “bugs” that are standardly, though often perhaps

mistakenly, attributed to syntactic difficulties, cf. Spohrer and Soloway [127],

Winslow [138], Pane and Myers [95] p. 30). This gives an excellent context for novice

students to encounter and overcome such problems, where they have willingly taken

them on, have a strong personal motivation, also a fairly clear conception of what they

are trying to achieve, and are working within a system that gives straightforward,

visible, and immediate feedback. Having developed the strategies to become “effective”

(Robins et al. [111], pp. 165-6) in this context, the hope is that they can then take these

strategies forward to other, more advanced, systems.

The value of developing this sort of initial competence (and confidence) on simple

systems is emphasised by the research of Hagan and Markham [51], who found that

prior programming experience brings a major continuing benefit to those embarking on

Computing degree programmes (cf. also Cooper et al. [31]). This opens another

possible role for Turtle, as a pre-university “taster”, taking advantage of the system’s

engaging character and built-in independent learning resources to provide advance

preparation prior to formal courses. In a somewhat similar vein, Turtle could be used to

assess student’s varied programming backgrounds and aptitudes, playing the same sort

of role that Poulton [105] suggests for LOGO, but with the advantage of introducing a

more standard syntax that might well be useful to them in the future, and giving students

the possibility of exploration into the Turtle Machine, which may be particularly

appreciated by those who could otherwise find the exercise trivial.

This concludes our detailed discussion of Turtle as a vehicle for introductory

programming. In Chapter 5 we move on to the second half of the thesis, concerned

with the virtual Turtle Machine and its operations, and thus having a teaching

orientation towards Computer Science rather than introductory programming.

44

Chapter 5 The Virtual Turtle Machine
and its “PCode” Object Language

By far the most difficult aspect of the system design was the development of a virtual

“Turtle Machine” capable of sustaining full recursive and versatile parameter handling

behaviour whilst remaining simple enough to be broadly comprehensible (after only a

moderate amount of study) to a non-specialist. Perhaps the acid test here is whether the

Help file sections on “An Introduction to PCode”, “Technical Note on Variables,

Procedures and Parameters”, and “PCode Reference Guide” are in fact potentially

accessible to interested students who have not studied the relevant computer science in

detail. Experience here is positive, both by reference to the students themselves and to a

peer observer (Dr. John Davy), no doubt in large part because this aspect of the system

has been confined to purely optional final lectures, designed to appeal to self-selected

enthusiasts within the student body. (However even these enthusiasts would have had

little chance of understanding standard textbook presentations of the relevant theory, so

this success is gratifying.) In these next two chapters, I shall approach the virtual Turtle

Machine from the opposite direction to the Help file, focusing more on explaining why it

has the structure it does, rather than on the detail of how that structure operates in

practice. At the same time, I shall endeavour to explain these things in a way that

presupposes very little technical background, so that the chapters can serve at the same

time as an illustration of how the Turtle system can provide an appropriate vehicle for

Computer Science education at the non-specialist level.

5.1 Turtle Graphics Commands, the Program Stack,
and Arithmetical/Boolean Operators

Since the educational aim of the Turtle Machine is to give an insight into the general

behaviour of a compiler and dynamic memory management, rather than the specifics of

graphical processing, it is clearly appropriate to keep the handling of Turtle Graphics

commands as simple as possible, which is done by straightforwardly defining primitive

“machine code” instructions corresponding to all of the Turtle Graphics primitives.

These are shown in the following table, where each instruction is followed by the

45

relevant “assembler” mnemonic and “machine code” value in decimal and hexadecimal

(using the Delphi, and hence Turtle, prefix convention of “$”). Here they are ordered

according to their logical category and stack effects, an organisation that should be

evident from the Help file’s “PCode Reference Guide”:35

Turtle
instruction

Assembler
mnemonic

Decimal
code

Hex
code

Turtle
instruction

Assembler
mnemonic

Decimal
code

Hex
code

penup PNUP 64 $40 Colour COLR 103 $67

pendown PNDN 65 $41 randcol RNDC 104 $68

update UDAT 66 $42 blank BLNK 105 $69

noupdate NDAT 67 $43 pause WAIT 106 $6A

home HOME 80 $50 circle CIRC 112 $70

remember RMBR 81 $51 blot BLOT 113 $71

forward FWRD 96 $60 polyline POLY 114 $72

back BACK 97 $61 polygon FILL 115 $73

left LEFT 98 $62 forget FRGT 116 $74

right RGHT 99 $63 movexy MVXY 128 $80

setx SETX 100 $64 drawxy DRXY 129 $81

sety SETY 101 $65 setxy TOXY 130 $82

thickness THIK 102 $66 canvas CANV 136 $88

Some of these instructions (e.g. “home”) require no parameters, some require just one

(e.g. “forward”), and some require two (e.g. “movexy”) or more (i.e. “canvas”) – given

this variety, the simplest way of delivering these parameters in a uniform manner within

the compiled machine code is by means of a Program Stack (or just the capitalised

“Stack” for short). Such a stack also provides the simplest way of handling arithmetical

calculations in reverse Polish fashion, and this integrates easily with its use for parameter

35 In this and the next chapter, all of the various PCode commands will be discussed (with the sole

exception of the “NULL” command, code 0, which does nothing whatever), but owing to constraints of

space, in most cases their precise behaviour is not specified. For details of all PCode commands, please

consult the Help file section just referred to.

46

passing. Thus for example the command:

 movexy(3+4*5,15-7)

should involve the following sequence of operations:

 Push 3 onto the Stack

 Push 4 onto the Stack

 Push 5 onto the Stack

 Multiply the top two Stack values, leaving the result (i.e. 20) in their place

 Add the top two Stack values, leaving the result (i.e. 23) in their place

 Push 15 onto the Stack

 Push 7 onto the Stack

 Subtract the top Stack value from the next, leaving the result (i.e. 8) in their place

 Execute MVXY, pulling its two parameters (i.e. 23 and 8) from the Stack

Since any student who aspires to understand this sort of thing obviously needs to have

grasped the concept of a stack,36 the simplest possible structure for the desired virtual

Turtle Machine is one based on an explicit “hardware stack” architecture, taking

advantage of this to eliminate as far as possible the need for any other parameter storage

registers. As we shall see, such a simplification is indeed entirely feasible.

The use of a stack-based architecture avoids any need to consider “hardware”

operations at any lower level (i.e. we can ignore the issue of how the Stack is to be

implemented), and this enables us to determine very straightforwardly the required

behaviour both of the Turtle Graphics primitive “machine code” commands, and also the

various arithmetic and Boolean operators. These must operate on the top Stack value

or the top two (and in the latter case, must treat these in an appropriate order, so that

SUBT, for example, subtracts the top value from the next, as in the italicised example

above);37 the calculated result of each operation must then replace the used values on

top of the Stack. Working out the specific behaviour of each particular instruction from

36 This is a virtue rather than a drawback, since it means that the Turtle system provides a useful

vehicle for introducing (and illustrating the tremendous practical value of) this vital data structure.

37 All this applies equally to the relevant Turtle Graphics “machine code” commands from the

previous table, as illustrated by “MVXY” in the italicised example.

47

this general pattern is then very simple – they are merely listed here, but see the “PCode

Reference Guide” (in the online Help file) for details if desired:

Turtle
operator

Assembler
mnemonic

Decimal
code

Hex
code

Turtle
operator

Assembler
mnemonic

Decimal
code

Hex
code

– (unary) NEG 144 $90 or OR 193 $C1

Not NOT 160 $A0 xor XOR 194 $C2

+ PLUS 176 $B0 = EQAL 208 $D0

– (binary) SUBT 177 $B1 <> NOEQ 209 $D1

* MULT 178 $B2 < LESS 210 $D2

/ DIV 179 $B3 > MORE 211 $D3

mod MOD 180 $B4 <= LSEQ 212 $D4

and AND 192 $C0 >= MREQ 213 $D5

5.2 Command Parameters, Global Variables, and the
Heap

An issue not covered in the previous section is how the various command parameters, or

numbers to be operated upon, are to be loaded, or “pushed”, onto the Program Stack in

the first place. Where they are straightforward integers (rather than variables), this is

accomplished using the “LDIN” machine instruction:

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

load integer (onto Stack) LDIN 16 $10

So we can now derive the appropriate compilation of the various simple statements in

the first built-in illustrative program (seen in §2.1 above), for example:

forward(450); LDIN 450 FWRD

pause(1000); LDIN 1000 WAIT

right(90); LDIN 90 RGHT

thickness(9); LDIN 9 THIK

48

Suppose, however, that we wish to compile a statement that operates on a global

variable, for example:

forward(turty);

which moves the turtle forward by a distance corresponding to its current y-coordinate.

(Here we take advantage of the fact that “turty” is a predefined global variable, and so

can be discussed without worrying about the details of variable declarations.) This

command is obviously similar to the “forward(450)” compiled above, except that here

the parameter to FWRD has to be loaded onto the Program Stack from the storage

address of the global variable “turty”, rather than being loaded as a fixed integer.

Global variables are stored sequentially at the bottom of a structure called the Heap,

which begins with the five predefined globals “turtx”, “turty”, “turtd”, “turtt”, and

“turtc” (representing the current turtle x-coordinate, y-coordinate, direction, pen

thickness, and colour) and then continues with any global variables that may be defined

within the running program. The remainder of the Heap is used for the storage of local

variables, which we’ll come to later (see §§6.2-4):

Heap structure: <any local variables declared within
procedures that are currently active>

 <any global variables declared within
the currently running program>

 (index 5) turtc

 (index 4) turtt

 (index 3) turtd

 (index 2) turty

 (index 1) turtx

Figure 10: Overall heap structure, showing predefined global variables

Since “turty” has an index number of 2, to compile the statement “forward(turty)” we

need an appropriate PCode command for loading the global variable with index 2 onto

the Program Stack. This command is “LDVG 2”, giving the compiled result:

49

forward(turty); LDVG 2 FWRD

The inverse PCode instruction to “LDVG” is “STVG”, which pulls (or “pops”) the

top value from the Program Stack and stores it in the appropriately indexed global

variable. The codes of these two instructions are as follows:

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

load global variable LDVG 17 $11

store global variable STVG 33 $21

Together with the PCode commands already introduced, these enable the compilation of

assignments and other operations involving global variables. The following fragment,

for example, shows the start of one of the built-in illustrative programs:

PROGRAM cyclecolours;

VAR length: integer;

 cinc: integer;

 nextc: integer;

BEGIN

 randcol(5); LDIN 5 RNDC

 cinc:=turtc-1; LDVG 5 LDIN 1 SUBT STVG 7

 randcol(6); LDIN 6 RNDC

 length:=0; LDIN 0 STVG 6

When this is compiled, the three newly declared global variables “length”, “cinc” and

“nextc” are assigned addresses 6, 7, and 8 on the Heap, directly above the five

predefined globals. Hence the last compiled line above, which has the effect of loading

the integer 0 onto the Stack and then storing this in global variable index 6, is indeed

equivalent to “length:=0”. The second compiled line is more complex, involving a

calculation prior to the global assignment. It begins by loading variable 5 (i.e. “turtc”)

onto the Stack, then the integer 1 is also loaded and SUBT is performed, which leaves

the result of the subtraction “turtc–1” on the Stack. Finally this result is stored in global

variable index 7 (i.e. “cinc”), yielding the desired “cinc:=turtc–1”.

50

5.3 PCode Sequential Structure and Flow Control

5.3.1 PCode Line Structure, Storage, and Sequencing

Given the educational purpose of the Turtle virtual machine, easy comprehensibility of

its PCode is far more important than economic storage and processing. Hence it makes

sense to divide it, for both logical and display purposes, into small sections

(henceforward “code lines”) corresponding to individual Turtle Graphics commands or

other relatively self-contained units, as illustrated by the four code lines (“LDIN 5

RNDC” etc.) shown in the short compilation table on the previous page. This implies a

storage overhead, because to preserve the line structure of the code, it is not enough

just to store the relevant PCode integers as a continuous undifferentiated sequence. An

additional code is needed within each line, either at the beginning (to specify the length

of each line), or at the end (to act as a terminator). The former method is used for the

actual storage of “Turtle Graphics Compiled PCode” files (extension “.tgc”) when they

are saved from the Compile menu, and this enables the line structure to be restored very

easily when it is loaded into the Turtle Run-Time Standalone System, which is designed

to run compiled PCode directly. In addition to these individual line length codes, three

other numeric codes are stored within each PCode file at the very beginning,

representing in turn the total number of compiled code lines, the index of the code line

from which execution is to start, and the number of global variables – these too are

needed to facilitate the standalone execution of the compiled PCode.

The organisation of PCode into code lines naturally suggests their use for

determining the sequencing and flow of control when the compiled code is executed,

though this involves some departure from the behaviour of a typical real-life processor

(whose code locations, jumps and branches are all likely to be specified by absolute or

relative memory addresses). It also brings some inefficiency, because the compiled

PCode has to be set up in a two-dimensional array, with consequent processing and

space overheads. Conceptually, however, the departure is not huge, because it is

obvious that the code line organisation can easily be translated into a linear form, and

the sequencing of control flow along each code line and then from one code line to the

next is closely analogous to the familiar process of following the text of a book.

51

5.3.2 The Conditional “if … then”

To compile “if … then” structures within this context, we need one PCode instruction

that will jump to the beginning of a specified code line unconditionally, and another that

will branch conditionally, depending on the evaluation of some condition. For

simplicity, this condition is always that the value on top of the Program Stack is 0, i.e.

“false”, so the branch is followed if, and only if, the previously tested condition is not

satisfied: (The “HALT” instruction is also included here for completeness.)

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

jump to code line JUMP 48 $30

if not, branch to code line IFNO 49 $31

halt execution HALT 56 $38

To see how all this fits together, consider the following simple program and its

compiled PCode equivalent (in which the code lines are numbered):

PROGRAM randblots;

BEGIN

 randcol(2); 1. LDIN 2 RNDC

 if turtc=1 then 2. LDVG 5 LDIN 1 EQUL IFNO 5

 blot(300) 3. LDIN 300 BLOT

 else 4. JUMP 7

 begin

 circle(300); 5. LDIN 300 CIRC

 blot(200) 6. LDIN 200 BLOT

 end;

 colour(red); 7. LDIN 255 COLR

 blot(100) 8. LDIN 100 BLOT

END. 9. HALT

The crucial code line here is the second, where the conditional test is performed. First

the current value of “turtc” is pushed onto the Stack (“LDVG 5”), then the integer 1

(“LDIN 1”). The command “EQUL” then tests the top two Stack values for equality,

leaving a “true” result (i.e. −1) in their place if they are indeed equal, and a “false” result

(i.e. 0) if they are different. If the result was “true”, then the following command

52

“IFNO 5” is simply ignored, and processing continues through code line 3, before

meeting the unconditional “JUMP 7” command at line 4, which jumps over code lines 5

and 6 directly to 7. If on the other hand the result was “false”, then “IFNO 5” branches

the processing to code line 5 and continues from there. In either case, the program halts

at code line 9.

5.3.3 The Iterative “repeat … until”

The “repeat … until” structure requires only a single conditional backward branch, and

so can be straightforwardly compiled using the IFNO instruction; for example:

PROGRAM concentric;

VAR radius: integer;

BEGIN

 radius:=500; 1. LDIN 500 STVG 6

 repeat

 randcol(8); 2. LDIN 8 RNDC

 blot(radius) 3. LDVG 6 BLOT

 radius:=radius-12 4. LDVG 6 LDIN 12 SUBT STVG
6

 until radius<20 5. LDVG 6 LDIN 20 LESS IFNO
2

END. 6. HALT

Here code line 5 makes the test for “radius<20” – if this is false, then processing

branches back to code line 2, repeating the loop again.

5.3.4 The Counting Loop “for … do”

The “for … do” loop (or “for … downto” if the counting is downwards), like

“if … then”, involves one jump and one conditional branch, though it is significantly

more complex because of the handling of the loop variable. Here is the complete

“forloops” illustrative program together with its compilation:

53

PROGRAM forloops;

VAR count: integer;

BEGIN 1. LDIN 1

 for count:=1 to 200 do 2. STVG 6 LDIN 200

 begin 3. LDVG 6 MREQ IFNO 11

 forward(count/3); 4. LDVG 6 LDIN 3 DIV FWRD

 right(5); 5. LDIN 5 RGHT

 colour(red); 6. LDIN 255 COLR

 blot(200); 7. LDIN 200 BLOT

 colour(black); 8. LDIN 0 COLR

 circle(200) 9. LDIN 200 CIRC

 end 10. LDVG 6 LDIN 1 PLUS JUMP 2

END. 11. HALT

The program starts by loading 1 onto the Stack, and at code line 2 this value is moved

into the variable “count” and replaced on the Stack by the loop termination value of

200. Now the variable is reloaded onto the Stack in order to compare it against that

200,38 with the operator “MREQ” leaving the result “true” (i.e. −1) on the Stack if and

only if 200 is more than, or equal to, the variable’s current value. Hence if the result is

“false” (i.e. 0), this implies that “count” has reached a value greater than 200, and hence

that the loop should terminate, which is achieved by the “IFNO 11” command in code

line 3 which branches to the “HALT” at code line 11. (This structure ensures that

counting loops within Turtle conform to the Pascal standard in not operating at all if the

initial value of the loop variable is already beyond the termination value.) The body of

the loop consists of code lines 4 to 9; then line 10 pushes the loop variable “count” back

onto the Stack, increments it by 1 (leaving the incremented value on the Stack), and

unconditionally jumps back to code line 2, where the new value gets stored and then

tested, continuing on to the next iteration of the loop.

38 It may seem wasteful to load the “count” value onto the Stack, then save it to the variable, only

to reload it again after the termination value. The explanation for this will become clear shortly, when

we see future iterations of the loop (via the “JUMP” command in code line 10) making use of the very

same commands, with the important exception of the preliminary loading of the initial value.

54

Chapter 6 Turtle Machine Procedures

6.1 Procedure Calls, and the Return Stack

One of the most fundamental characteristics of procedures, which helps to make them so

valuable in modular programming, is that they can be “called” from many different

locations within the program code, without disrupting the local flow of control. A

procedure acts as a self-contained unit, running its course and then immediately

returning control to the location from which it was called, which can vary from occasion

to occasion. Hence the implementation of procedures within PCode requires a form of

flow management more flexible than the fixed jumps and branches discussed in the

previous chapter. To cope with the potential flexibility of calling locations, the PCode

must be able to save the appropriate return location when each procedure is called, and

to jump back to it when the procedure terminates. A further complication is that

procedures can be nested or recursive, with one procedure calling another, and that yet

another, and so on without theoretical limit; thus numerous procedures, or instances of

a single procedure, can all be active simultaneously. This in turn implies that the

sequence of pending return locations – corresponding to the hierarchy of procedures

currently in progress – cannot be stored in fixed addresses, but must be stored in a stack

structure (last-in-first-out, since the last procedure to start is always the first to finish).

The implementation of procedures therefore requires that the Turtle Machine should

incorporate a Procedure Return Stack (or “Return Stack” for short).

Operation of the Procedure Return Stack clearly requires (at least) two PCode

commands – one when each procedure (or, more accurately, procedure instance) is

called, and one when it terminates. The command that calls a procedure must perform

two distinct functions: transferring control to the code line corresponding to the start of

the procedure’s body, and pushing the appropriate return location (i.e. the code line

from which the procedure was called) onto the Procedure Return Stack. The command

that terminates the procedure should then pop this same return location from the Return

Stack, and transfer control accordingly back to the (end of the) code line from which the

procedure was called. These two commands are as follows:

55

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

call procedure PROC 50 $32

end procedure ENDP 51 $33

6.2 Local Variable Storage, the Heap Top Pointer,
and Procedure Heap Pointers

§5.2 above explained how global variables are stored at the bottom of the Heap, and

accessed (through the instructions “LDVG” and “STVG”) by means of an index number

that gives their “address” within the Heap. Local variables are also stored in the Heap,

above the globals, but what makes their processing more complicated is that they do not

reside there permanently, but are created and destroyed in turn as the procedure instance

to which they belong first starts and then terminates.

The basic principle for referencing local variables is quite similar to that for globals,

in that each variable has an index number which indicates its relative address within the

appropriate area of the Heap. The major difference is that this area is not fixed, but

determined dynamically when the procedure concerned begins. To achieve this, the

system continuously maintains a “Heap Top Pointer” which keeps track of the top of the

Heap – i.e. the top limit of that part of the Heap being used for active variable storage.

Then whenever a procedure is called, the system takes note of the current value of this

Heap Top Pointer, and stores it in association with that procedure; this storage address

is called the “Procedure Heap Pointer” (or “Procedure Heap (Base) Pointer”) for the

procedure concerned.39 The local variables of the new procedure instance are then

stored immediately above the “Heap Base” address indicated by its Procedure Heap

Pointer, in the order of their index codes (which correspond to the order of their

39 Hence a program that contains three procedures will involve three Procedure Heap Pointers. It

is not possible to make do with a single Procedure Heap Pointer, dynamically adjusted to whichever is

the “current” procedure, because two (or more) procedures can be nested, in which case when the

“inner” procedure is running, the local variables of both must be simultaneously accessible.

56

declaration within the procedure). The two instructions used to load these local

variables onto the Program Stack, and to store them from the Program Stack, are as

follows:40

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

load variable (or value parameter) LDVV 18 $12

store variable (or value parameter) STVV 34 $22

Suppose, for example, that a program has the five procedures “proc1” to “proc5”,

of which the first is called by the third, which is in turn called by the fifth.41 Suppose

also that the first procedure “proc1”, currently running, has three local variables named

“one”, “two”, and “three”. Then assuming that the only other currently active

procedures are “proc5” and “proc3”, the context in which “LDVV” and “STVV”

reference these variables can be pictured as shown in Figure 11 below. To load the

second local variable of proc1 (i.e. “two”) onto the Program Stack, the appropriate

command is “LDVV 1 2” (where “1” indicates the first procedure in the program, and

“2” the second local variable of that procedure). To identify the required address on the

Heap, we simply take the Procedure Heap Pointer for the procedure in question (i.e.

Procedure Heap Pointer 1), and add the index of the particular variable (i.e. 2). As

Figure 11 shows, this indeed generates the correct address, and the same applies to the

corresponding inverse command “STVV 1 2”.42

40 In these mnemonics, the first “V” stands for “variable”, and the second for “value”, because

these are the commands pertaining to local variables and value parameters of procedures. Reference

parameters need different commands, whose mnemonics are “LDVR” and “STVR” – see §6.4.2 below.

41 In Turtle Graphics Pascal, the called procedure must precede the calling procedure, except

when two procedures are nested, in which case mutual references are possible, cf. note 44 in §6.3

below.

42 This handling of local variables can be seen as a natural extension of the method for global

variables explained in §5.2. In effect, all global variables are indexed relative to a single Program Heap

Pointer which points just below the entire Heap, whereas local variables are indexed relative to a

Procedure Heap Pointer which is specific to the particular procedure within which they occur.

57

 Heap

Heap Top Pointer (index=3) three

 (index=2) two

 (index=1) one

Procedure Heap Pointer 1
(points to “Heap Base” address
for first procedure in program)

<local variables of proc3>

Procedure Heap Pointer 3
(points to “Heap Base” address
for third procedure in program)

<local variables of proc5>

Procedure Heap Pointer 5 <global variables of the program>

 turtc

 turtt

 turtd

 turty

Note that the “Heap Base” for
each procedure is the last Heap
address before the relevant new
storage area begins. Hence in
this example, Procedure Heap
Pointer 1 points to the last local
variable address of proc3. turtx

(Program Heap Pointer)

Figure 11: Illustrative Heap structure while three procedures are active

6.3 Claiming and Releasing Heap Space; the Heap
Control Stack

We must now deal with the details of how the Heap reference mechanism outlined

above is to be maintained while a program is running. Clearly at least two more PCode

instructions are needed, one (“HPCL”) to “claim” space on the Heap for the local

58

variables of each new procedure,43 and another (“HPRE”) to “release” that space once

the procedure has terminated:

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

claim space on Heap HPCL 52 $34

release space on Heap HPRE 53 $35

The intended behaviour of “HPCL” and “HPRE” can be deduced if we compare the

situation before, and after, the first procedure call made within the hypothetical five-

procedure program described in §6.2 above:

 Situation prior to initial call of proc5:

Heap Top Pointer
<global variables>

 Situation following call of proc5:

Heap Top Pointer
<local variables of proc5>

Procedure Heap Pointer 5
<global variables>

Figure 12: Top of Heap before, and after, a procedure call

Moving from the first situation to the second (i.e. claiming Heap space for local

variables) is straightforward – when the procedure starts, its Procedure Heap (Base)

Pointer should be given the current value of the Heap Top Pointer, then the Heap Top

Pointer itself should be incremented by the number of local variables in the procedure.

43 Strictly, procedure instance, because in a recursive program the same procedure can have many

instances, each with its own local variables. For simplicity I shall here usually refer simply to

“procedures”, but take for granted that procedure instances are understood where appropriate.

59

The inverse operation, releasing the claimed Heap space when the procedure terminates,

might seem to be equally straightforward, simply requiring that the Heap Top Pointer be

reduced by the same amount that it was previously incremented. However this crude

method will fail to restore the Procedure Heap Pointer also to its own previous value,

which though unproblematic if the just-terminated procedure is no longer operative, is

disastrous if another instance of that procedure is still active (a common situation if the

procedure is recursive). The obvious refinement of this crude method would be to

decrement the Procedure Heap (Base) Pointer also, by the same amount as the Heap

Top Pointer, and this will indeed work if the only recursion in the program involves

single procedures that call themselves. However a Turtle program can contain two

procedures that are mutually recursive (as long as one is a sub-procedure of the

other),44 and in such a case, maintenance of the Heap structure through the possibly

alternating recursive calls requires a far more robust approach.

The upshot of all this is that when a procedure is called and its Procedure Heap

Pointer is updated accordingly, the previous value of this pointer must be saved, to be

restored when the current instance of the procedure terminates. Since there is no limit

in principle to the depth of recursion, and hence to how many such previous values may

be involved, the most efficient way of storing them is in a stack structure. Rather than

have a separate stack for each procedure, the most elegant way of achieving this is to

maintain a single “Heap Control Stack”, of which the Heap Top Pointer is the topmost

value. Then the required result can be achieved by specifying the behaviour of “HPCL”

and “HPRE” as follows:

HPCL: First, exchange the value currently on top of the Heap Control Stack –

i.e. the Heap Top Pointer – with the Procedure Heap Pointer for the

44 In standard Pascal, two procedures can be defined as mutually recursive using the forward

directive, but this is not provided here because “forward” has a very different traditional meaning

within Turtle Graphics. It would be possible to define an alternative directive (the word “deferred”

might be appropriate), but since simple mutual recursion can already be achieved in Turtle by nesting

the procedures, this complication (and the inevitable inconsistency with Pascal as implemented within

Delphi and other systems) seems best avoided.

60

procedure concerned (this both sets the Procedure Heap Pointer

appropriately, and also saves its previous value on the Heap Control

Stack). Then push onto the Heap Control Stack the calculated new value

for the Heap Top Pointer (which is equal to the old value plus the number

of local variables in the procedure).

HPRE: Remove the top element of the Heap Control Stack (i.e. the Heap Top

Pointer). Then exchange the new top element with the Procedure Heap

Pointer for the procedure concerned (this restores the previously saved

values of both the Heap Top Pointer and the Procedure Heap Pointer).

It should be clear from these descriptions that they are indeed inverse operations –

“HPRE”, thus defined, restores exactly the Heap situation prior to the corresponding

“HPCL”, and because all the relevant values are saved on the Heap Control Stack, this

will remain true no matter how many recursive or other procedure calls are executed.

6.4 Dealing with Parameters

Pascal procedures can have two different types of parameter: those that are “called by

value”, and those that are “called by reference” (or “value parameters” and “reference

parameters” for short). The syntactic difference between the two is minimal, in that the

latter are simply prefixed by the keyword “VAR” (hence the informal term “VAR

parameters”). But the two need to be handled by quite different mechanisms.

6.4.1 Value Parameters

Value parameters behave essentially as ordinary local variables, except that their initial

value on entry to the procedure is set to the value of the corresponding actual

parameter. (Turtle initialises other local variables, and all global variables, to zero – see

note 46 in §6.6 below) So the only further issue that needs to be discussed here is how

those initial values get passed into the procedure.

61

Given the structure of the virtual Turtle Machine, the obvious and natural way to

pass parameters is via the Program Stack (this also avoids any need to limit artificially

the number of parameters that can be passed, which would apply if a fixed number of

registers were to be used). So the PCode sequence prior to calling a procedure with one

parameter will be exactly as when calling a Turtle Graphics command with one

parameter (cf. §5.2 above), namely, pushing the actual parameter value onto the

Program Stack; then the procedure is called by transferring control to the appropriate

codeline with “PROC”. The same mechanism applies if there are more parameters, with

these being pushed onto the Stack in their natural syntactic order (i.e. the first parameter

gets pushed onto the Stack first). To match up with this, the PCode within the body of

the procedure will start with one “STVV” command for each value parameter, except

that now they must be dealt with in reverse order (because when the “PROC” command

is performed, the last parameter will be at the top of the Stack – see §6.6 below for a

detailed example of this last-in-first-out unpacking).

6.4.2 Reference Parameters

Reference parameters are significantly different in behaviour from value parameters, in

that instead of specifying a value to be given to the corresponding formal parameter

within the procedure, they specify a variable for which the formal parameter is to act as

an “alias” within the procedure. Thus the actual parameter to the procedure must be a

variable, and it is in effect the address of this variable that gets passed into the

procedure, rather than its value.

It follows that handling reference parameters requires a completely different set of

PCode instructions from those that apply to value parameters. The two most basic are:

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

load reference parameter LDVR 19 $13

store reference parameter STVR 35 $23

62

which within the procedure do more or less the same job for reference parameters that

“LDVV” and “STVV” do for value parameters: that is, they provide access to the

relevant formal parameter within the procedure’s code lines, enabling that parameter to

be loaded onto the Program Stack or saved from the Program Stack much like any

normal variable. Obviously the method by which “LDVR” and “STVR” operate,

however, is very different, because in order to identify which address on the Heap

should be loaded or stored (respectively), a process of indirection needs to take place,

whereby the actual parameter’s storage address is looked up in a “register”, where it will

be indexed under the formal parameter which is serving as its alias. This register cannot

be “hard wired”, because one and the same procedure could be called from many

different places in the program, with a wide variety of different variables providing the

actual input parameter (implying that the same formal parameter would be acting as an

“alias” for different actual variables on these different occasions). So the obvious way

of dealing with this is to assign a local variable storage address for each reference

parameter, just as for value parameters, except that when these addresses are accessed

using “LDVR” and “STVR” (as opposed to “LDVV” and “STVV”), they will be

interpreted as registers containing indirection addresses, rather than as storage locations

for variables themselves. So if, in the situation we were considering earlier (at page 57),

parameters one and three of the first procedure were reference rather than value

parameters, then the top of the Heap would be as follows:

 Heap

Heap Top Pointer (index=3) <address of variable given as actual
parameter to formal parameter three>

 (index=2) two

 (index=1) <address of variable given as actual
parameter to formal parameter one>

Procedure Heap Pointer 1
(points to “Heap Base” address
for first procedure in program)

Figure 13: Top of Heap where procedure involves reference parameters

63

Then “LDVR 1 3”, for example, will work by first identifying the required indirection

register on the Heap, calculating this by taking the Procedure Heap Pointer for the

procedure in question (i.e. Procedure Heap Pointer 1), and adding the index of the

particular variable (i.e. 3). But then instead of simply loading onto the Program Stack

whatever value – 5, say – it finds in that address (as would happen in the case of

“LDVV 1 3”), it instead proceeds to interpret this value as itself an indirected Heap

address, and accordingly loads the value which is to be found in the corresponding Heap

location – in this case, at address 5 (which is the address of the turtc value, so this is the

situation that will arise where turtc is the actual parameter corresponding to the formal

parameter “three”). “STVR” acts very much like “LDVR”, except that it stores into the

indirected Heap address rather than loading from it.

The other PCode instructions that handle reference parameters are used for setting

up the appropriate aliases when a relevant procedure is called:

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

load address of global variable LDAG 20 $14

load address of local variable (or value param) LDAV 21 $15

load indirected address of reference parameter LDAR 22 $16

store indirected address of reference parameter STAR 38 $26

The first three of these are used to load the Heap address of the relevant actual

parameter variable onto the Program Stack, for transfer into the procedure body. Three

instructions are needed because a procedure call can occur not only from the main

program but also from another procedure, one of whose own variables or parameters

might therefore be “aliased” by the reference parameter within the called procedure.

Hence the actual input parameter could be any one of a global variable (“LDAG”),45 a

local variable or value parameter of the calling procedure (“LDAV”), or a reference

parameter of the calling procedure (“LDAR”). Whichever of these is involved,

45 “LDAG” is in fact equivalent to “LDIN”, since the Heap address of the nth global variable is

just n. But for the sake of clarity, the two uses are differentiated by using separate instructions.

64

however, the same instruction (“STAR”) is used within the procedure code to store the

actual parameter’s Heap address in the procedure’s corresponding formal parameter

“indirection register”.

6.5 The Procedure Register Stack

We saw earlier (in §2.3) that the Turtle system incorporates a “trace” facility which

displays each PCode command as it is executed, together with relevant contextual

information including the numeric index of whichever procedure (if any) is running at

any particular time, and how many procedures are active. However the instructions

introduced so far are not designed to keep track of this information, and it cannot be

deduced by simply counting how many procedure calls have been made and recording

the last such call. For as the middle line of the following sequence illustrates, the current

procedure is not always the last to have started, nor the next to finish:

 proc2 starts
 proc1 starts and finishes
 (proc2 running)
 proc1 starts and finishes
 proc2 finishes

The simplest solution to this bookkeeping problem is to maintain yet another stack, the

“Procedure Register Stack”, whose topmost value (the “Procedure Register”) is set

according to the procedure which is currently running, and whose height indicates how

many procedures are active. The operation of this stack is very straightforward: when a

procedure begins, its number is pushed onto the stack, and whenever a procedure ends,

the top value is pulled from the stack, using the following two instructions:

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

push procedure index onto Procedure Register Stack PSPR 54 $36

pull procedure index from Procedure Register Stack PLPR 55 $37

65

6.6 Putting Procedures Together

We can now see how all this fits together in compiling a program with a fairly complex

procedure interface. This example produces the effect of a ball bouncing back and forth

horizontally, while performing a slow “random walk” vertically:

 PROGRAM randomdrift;

 VAR bgcol,xpos,xvel,ypos: integer;

 PROCEDURE doball(size,bgc,col: integer;
VAR xp,xv,yp: integer); 1. PSPR 1 HPCL 1 7

 VAR ymove: integer; 2. ZERO 1 7 STAR 1 6 STAR 1 5 STAR 1 4 …

 BEGIN … STVV 1 3 STVV 1 2 STVV 1 1

 randcol(7); 3. LDIN 7 RNDC

 ymove := turtc−4; 4. LDVG 5 LDIN 4 SUBT STVV 1 7

 setxy(xp,yp); 5. LDVR 1 4 LDVR 1 6 TOXY

 colour(bgc); 6. LDVV 1 2 COLR

 blot(size); 7. LDVV 1 1 BLOT

 xp := xp+xv; 8. LDVR 1 4 LDVR 1 5 PLUS STVR 1 4

 yp := yp+ymove; 9. LDVR 1 6 LDVV 1 7 PLUS STVR 1 6

 setxy(xp,yp); 10. LDVR 1 4 LDVR 1 6 TOXY

 colour(col); 11. LDVV 1 3 COLR

 blot(size); 12. LDVV 1 1 BLOT

 update; 13. UDAT

 noupdate; 14. NDAT

 if (xp<size) or (xp>1000−size) then 15. LDVR 1 4 LDVV 1 1 LESS LDVR 1 4 LDIN 1000 …

 … LDVV 1 1 SUBT MORE OR IFNO 17

 xv := −xv 16. LDVR 1 5 NEG STVR 1 5

 END; {procedure doball} 17. HPRE 1 PLPR ENDP

 BEGIN {main program}

 bgcol := $5000; 18. LDIN 20480 STVG 6

 blank(bgcol); 19. LDVG 6 BLNK

 xpos := 30; 20. LDIN 30 STVG 7

 xvel := 1; 21. LDIN 1 STVG 8

 ypos := 500; 22. LDIN 500 STVG 9

 repeat

 doball(30,bgcol,yellow,xpos,xvel,ypos) 23. LDIN 30 LDVG 6 LDIN 65535 LDAG 7 …

 … LDAG 8 LDAG 9 PROC 1

 until (ypos<0) or (ypos>1000) 24. LDVG 9 LDIN 0 LESS LDVG 9 …

 … LDIN 1000 MORE OR IFNO 23

 END. {main program} 25. HALT

66

This program is adapted from one of the built-in illustrative programs, which uses

reference parameters to enable a single “doball” procedure to handle the motion of two

(or more) balls that are bouncing around the screen, each with its own stored set of

position and velocity x- and y-components. Only one ball is included here, but because

the procedure is designed in this way, it would be easy to extend the program to include

more balls, perhaps to make a simple betting game (“Which ball will reach the top or

bottom of the Canvas first?”). Note also the “ymove” local variable, which is set

randomly (via “randcol”) to a value between plus and minus 3 to change the ball’s

y-coordinate accordingly, thus generating the ball’s vertical random walk.

When run, the PCode starts executing at code line 18, which sets the global variable

“bgcol” to an appropriate background colour – here the hexadecimal colour code

$005000 (20480 in decimal) specifies $50/$FF (80/255 in decimal) intensity of green,

with zero of blue and red (see §3.4.2). Then code line 19 uses this global variable to

“blank” out the Canvas accordingly, after which lines 20 to 22 set up the starting values

of the other three global variables (§5.2).

The body of the “repeat” loop is just code line 23, which executes the procedure

call to “doball”. Code line 24 then performs a conditional branch back to line 23, unless

the condition “(ypos<0) or (ypos>1000)” evaluates as true (the mechanism by which a

repeat loop achieves the required conditional branching is explained in §5.3.3). Most of

the PCode in line 24 is devoted to evaluating the relevant condition, operating in

standard reverse Polish fashion using the Program Stack (§§5.1-2).

Coming back now to code line 23, this simply loads the various actual procedure

parameters, in order, onto the Program Stack, before performing “PROC 1” to call the

procedure which starts at code line 1. The first and third actual parameters are

numerical constants (yellow being $FFFF in hexadecimal, 65535 in decimal); so these

are loaded onto the Stack using “LDIN”. The second is a global variable serving as a

value parameter to the procedure, so its current value is also simply loaded onto the

Stack using “LDVG”. But the last three actual parameters, by contrast, are global

variables corresponding to reference (“VAR”) parameters within the procedure, so it is

not their values that get loaded onto the Stack, but rather, their Heap addresses: this

requires use of the instruction “LDAG” rather than “LDVG”. Once all these Stack

67

operations have been completed, the “PROC 1” command at the end of code line 23

transfers control to line 1, but before doing so (as explained in §6.1), it first saves the

appropriate return location (in this case, 23) on the Procedure Return Stack, so that

when the procedure terminates with “ENDP”, the Turtle Machine will have a record of

where execution should continue (in this case, from the end of code line 23, hence code

line 24 will be the next to be executed after the procedure terminates).

By the time procedure “doball” is called, the condition of the Stack is as follows:

Stack position
(top = 1)

Item on the
Program Stack

Corresponding formal
parameter within procedure

1. Absolute Heap address of global
variable “ypos” (= 9)

yp (reference parameter)

2. Absolute Heap address of global
variable “xvel” (= 8)

xv (reference parameter)

3. Absolute Heap address of global
variable “xpos” (= 7)

xp (reference parameter)

4. Integer 65535 (or $FFFF) – the
colour code of yellow

col (value parameter)

5. Current value of global variable
“bgcol” (= 20480 or $5000)

bgc (value parameter)

6. Integer 30 size (value parameter)

Note that all six items on the Stack are integers, but the top three are destined to be

used as Heap addresses rather than as integer values in their own right. To see how this

happens, we must now turn our attention to the code lines of the procedure itself.

The first thing that happens after procedure “doball” is entered (at code line 1) is

that “PSPR 1” pushes the value of 1 onto the Procedure Register Stack, the 1 here

signifying that the first procedure in the program is now “active”. Then “HPCL 1 7”

claims space on the Heap for the seven local “variables” of this first procedure – these

are the six formal parameters in the table above, plus the one genuine local variable

“ymove”. “HPCL 1 7” does this by adjusting the various Heap pointers as described in

68

§6.3 above; this ensures in particular that Procedure Heap Pointer 1 is set up to point

just below the seven Heap locations that “doball” needs in order to hold (or, in the case

of reference parameters, to indirect) its seven local variables.

With the necessary Heap locations now claimed, code line 2 performs the task of

“unpacking” the Program Stack, so that all seven local variables are appropriately set

up. As already mentioned in §6.4.1, this unpacking must take place in reverse order

because of the last-in-first-out stack structure. For neatness the same reverse ordering is

extended to genuine local variables, although these do not require any use of the Stack –

hence the first operation in code line 2 is the one that deals with “ymove”, the seventh

local “variable”, whose initialisation to 0 involves a new PCode instruction:46

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

zero local variable ZERO 39 $27

Thus “ZERO 1 7” sets the seventh local variable of the first procedure to 0, without

requiring any values to be passed via the Program Stack. This command is not strictly

necessary for the operation of the Turtle Machine, since a sequence such as “LDIN 0

STVV 1 7” would have a similar result, but use of “ZERO” significantly shortens the

initialisation sequence for procedures that have genuine local variables.

The rest of code line 2 involves “unpacking” from the Stack either variable

addresses (in the case of the three reference parameters) or integer values (in the case of

the three value parameters). Variable addresses are unpacked using the PCode

instruction “STAR” (cf. §6.4.2), while integer values are unpacked using “STVV”. By

this process the six items from the Program Stack shown in the table above are all stored

appropriately for the procedure to make use of them.

46 The Turtle Machine initialises all variables to 0, except for the five predefined globals. Here it

differs from Delphi, which initialises global variables to 0 but leaves local variables initially undefined.

Although students should be taught that it is good practice to initialise all variables explicitly, the

confusion that can result from undefined variables (and resulting inconsistent program behaviour)

seems to make automatic initialisation most appropriate in a system designed for novice programmers.

69

The main body of the procedure can now get under way, working through the

following sequence (the numbers at the left refer to code lines of the compiled PCode):

3-4: “ymove” is set to a random value between −3 and +3

5-7 a background-coloured blot is drawn using the x- and y-coordinates

“xp” and “yp” (which are aliases for the globals “xpos” and “ypos”)

8-9 “xp” and “yp” are adjusted by the required horizontal (“xv”) and vertical

(“ymove”) movement, but since “xp” and “yp” are aliases for “xpos” and

“ypos”, it is really these two global variables that are changed.

10-12 a yellow blot is drawn using the new x- and y-coordinates “xp” and “yp”

(which, yet again, are aliases for “xpos” and “ypos”)

13-14 screen updating takes place only here in the procedure, aiming to give an

illusion of smooth motion rather than flashing as the blots are drawn

15-16 a test is performed to see whether “xp” (alias for “xpos”) is within a ball’s

radius of the side of the Canvas; if so, then “xv” (alias for “xvel”) is

inverted so that the ball will move back in the opposite direction

Code line 17, which ends the procedure, contains three commands. First, “HPRE 1”

releases the Heap space previously claimed by “HPCL 1 7” (as explained in §6.3); then

“PLPR” pulls the procedure index from the Procedure Register Stack (§6.5); finally

“ENDP” returns control to the main program, pulling the code line from which the

procedure was called (here, 23) from the Procedure Return Stack. Hence execution

then continues from code line 24, where the test is made to determine whether the

“repeat” loop should continue. Eventually “ypos” will randomly drift to be less than 0

or more than 1000, at which point the “IFNO” branch back to line 23 will cease to

operate, and the program will terminate when it reaches the “HALT” instruction at code

line 25.

70

6.6.1 Note on the Trace Facility

In closing this discussion, recall (from §2.3 and §6.5) that Turtle contains a trace facility

which can display in detail the execution steps of any program, including all transfer of

data via the Stack. This trace can be used with the program above to inspect the

mechanisms described, but before doing so, it is helpful to modify the “until” condition

to “until turtx>=33”, to restrict the repeat loop to three procedure calls. Each

procedure call involves around 50 program “cycles” – i.e. individual PCode commands –

so allowing the unmodified program to run will quickly build the trace display to an

unmanageable length (with very evident effects on program speed).

6.7 Stack Variations on the Turtle Machine

As described so far in this chapter and the last, the Turtle Machine involves no fewer

than four stack structures:

• The main Program Stack (§5.1), used for holding command parameters,

calculating intermediate values, and parameter passing;

• The Procedure Return Stack (§6.1), used for storing return code line locations

for program continuation after each procedure terminates;

• The Heap Control Stack (§6.3), used for managing Heap pointers that indicate

where each procedure’s dynamic storage is to be found;

• The Procedure Register Stack (§6.5), used to keep track of the active

procedures, in order to service the trace display facility.

These stacks are made independent in the default version of the software, to enable each

mechanism to be introduced separately in an educational context, but only the first of

them is genuinely necessary, and the Compile menu provides three options which

respectively enable each of the others to be dispensed with (involving some new PCode

instructions). These options are intended to facilitate teaching of the concept of a stack

frame, since they illustrate how a variety of data relevant to a procedure call (including

not only parameters, but also return location and heap pointers) can all be combined into

a “frame” on the Stack, and viewed as such through the trace display facility, which

71

shows the contents of the top three Program Stack locations at every “cycle” of the

program.47

To explain the differences between the options, we can see how they affect the

compilation of a short program with one (recursive) procedure. The procedure draws a

coloured blot, then moves forward (hence the name “bf”) and turns before calling itself

with an incremented parameter. The visual effect is of nine “pillars”:

PROGRAM pillars;

 PROCEDURE bf(r: integer); 1. PSPR 1 HPCL 1 1

 BEGIN 2. STVV 1 1

 if r<350 then 3. LDVV 1 1 LDIN 350 LESS IFNO 9

 begin

 randcol(6); 4. LDIN 6 RNDC

 blot(r-5); 5. LDVV 1 1 LDIN 5 SUBT BLOT

 forward(r*2); 6. LDVV 1 1 LDIN 2 MULT FWRD

 right(40); 7. LDIN 40 RGHT

 bf(r+1) 8. LDVV 1 1 LDIN 1 PLUS PROC 1

 end

 END; 9. HPRE 1 PLPR ENDP

BEGIN

 blank(black); 10. LDIN 0 BLNK

 penup; 11. PNUP

 movexy(-140,40); 12. LDIN 140 NEG LDIN 40 MVXY

 bf(50) 13. LDIN 50 PROC 1

END. 14. HALT

In the default situation, shown here, the procedure starts with PSPR + HPCL and ends

with HPRE + PLPR + ENDP; the parameter is passed through the Program Stack (at

code lines 8 and 13), but no other information is passed by that route.

47 Note also the option provided through the Compile menu, to display the height of the Stack

(rather than the contents of the third Stack location) in the last trace column.

72

6.7.1 Doing Without the Procedure Return Stack

Now suppose that we opt to compile the program without use of the Procedure Return

Stack; this means that the procedure “return jump” location must be passed via the

Program Stack, for which we use the “LDRJ” and “PLRJ” instructions respectively to

“load” and “pull” it:48

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

load procedure return jump LDRJ 224 $E0

pull (and make) return jump PLRJ 225 $E1

Since however the address is intended to remain on the Stack after the parameters have

been “unpacked”, it is best to load it before the parameters. This happens twice, once

when the procedure is called recursively (at code line 8), and once when it is called from

the main program (at code line 13):

 PROCEDURE bf(r: integer); 1. PSPR 1 HPCL 1 1

 BEGIN 2. STVV 1 1

 bf(r+1) 8. LDRJ LDVV 1 1 LDIN 1 PLUS PROC
1

 end

 END; 9. HPRE 1 PLPR PLRJ

BEGIN

 bf(50) 13. LDRJ LDIN 50 PROC 1

END. 14. HALT

48 In the same spirit as note 45 above, it is perhaps worth noting that the “PLRJ” instruction could

be used to replace “JUMP” if the aim were to minimise the instruction set, since “JUMP 10”, for

example (which jumps to the beginning of code line 10), is equivalent to “LDIN 9 PLRJ” (which jumps

to the end of code line 9).

73

The only other change is that the procedure here ends with “PLRJ” rather than “ENDP”

– procedure termination has to involve a different command if the machine is to continue

execution from the return location stored on the Program Stack (the effect of “PLRJ”)

rather than looking for the return location on the Procedure Return Stack.49

6.7.2 Doing Without the Heap Control Stack

Managing Heap space without the Heap Control Stack is a relatively complex business,

requiring that the relevant Heap pointers be passed and calculated on the Program Stack

rather than being controlled through a specially tailored mechanism. The Heap Top

Pointer is retained as a single register (rather than as the top of a stack), and each

procedure still has its own Procedure Heap Pointer, keeping track of the relevant Heap

Base address. But now these must be maintained explicitly, using the instructions

“LDHT” and “STHT”, which respectively load and store the current Heap Top Pointer,

and “LDHB” and “STHB”, which load and store the Procedure Heap (Base) Pointer for

a specified procedure:

Informal description of
command behaviour

Assembler
mnemonic

Decimal
code

Hex
code

load Heap Top Pointer LDHT 226 $E2

store Heap Top Pointer STHT 227 $E3

load Heap Base Pointer LDHB 228 $E4

store Heap Base Pointer STHB 229 $E5

This Heap maintenance is done as follows: (Some code line numbers are changed, but

for convenient comparison, the previous numbering is shown, in brackets.)

49 For the sake of simplicity the procedure call still involves “PROC”, which adjusts the Procedure

Return Stack, so that stack is in fact maintained. However it is not used – “PLRJ” removes the return

location from this stack (to prevent overflow) but just discards it, using the Program Stack value

instead.

74

 PROCEDURE bf(r: integer); 1. PSPR 1 LDHT STHB 1
LDHT LDIN 1 PLUS STHT

 BEGIN (2) STVV 1 1

 bf(r+1) (8) LDHB 1 LDHT
LDVV 1 1 LDIN 1 PLUS PROC 1
STHT STHB 1

 end

 END; (9) PLPR ENDP

BEGIN

 bf(50) (13) LDHT
LDIN 50 PROC 1
STHT

END. (14) HALT

At the start of the procedure, “HPCL 1 1” is replaced by a command sequence which

explicitly sets Procedure Heap Pointer 1 to the current value of the Heap Top Pointer

(“LDHT STHB 1”), and then adds 1 to the value of the Heap Top Pointer itself

(“LDHT LDIN 1 PLUS STHT”) – this “claims” space on the Heap for the one local

variable/parameter “r”. The process of releasing this space is more complex and must be

done outside the procedure itself, because it depends on whether the procedure is called

from a procedure (as at code line “8”) or from the main program (as at code line “13”).

In the latter case, the only thing needed to release the space is to reset the Heap Top

Pointer to the value it had prior to the procedure call; this is easily done by pushing that

value onto the Program Stack before the procedure is called (the “LDHT” in code line

“13”), and then pulling it from the Stack to reset the Heap Top Pointer after the

procedure has terminated (the “STHT” in code line “13”). In the former case, however,

where the procedure call is itself within a procedure, it is essential to save and restore

both the Heap Top Pointer and also the Procedure Heap (Base) Pointer of the calling

procedure; hence the sequence “LDHB 1 LDHT ... STHT STHB 1” in code line “8”,

bracketing the procedure call.

75

The options discussed in these last two sections can be combined, so that both the

procedure return location and the Heap pointers are handled through the Program Stack

rather than using Procedure Return and Heap Control Stacks. In this case the relevant

lines from the previous example would be modified as follows:

 bf(r+1) (8) LDHB 1 LDHT
LDRJ LDVV 1 1 LDIN 1 PLUS PROC 1
STHT STHB 1

 end

 END; (9) PLPR PLRJ

 bf(50) (13) LDHT
LDRJ LDIN 50 PROC 1
STHT

The only complication here is that the Heap pointers must be loaded onto the Program

Stack (using “LDHB” and “LDHT”) before the procedure “return jump” location is

loaded (with “LDRJ”), enabling this location to be “pulled” at the end of the procedure

(by “PLRJ”) without affecting the Heap pointers.

6.7.3 Doing Without the Procedure Register Stack

Since the Procedure Register, and the stack that maintains it, are used by the Turtle

Machine only to enable procedures to be “traced”, the “PSPR 1” and “PLPR”

commands can simply be removed from the compiled PCode without significantly

affecting it. When it is then run, the only apparent difference (apart from a very small

increase in speed) will be within the trace display, where the “Proc” column will

continuously show “0/0” instead of, for example, “1/1”, “1/2”, “1/3” etc. depending on

how many copies of the procedure are active.

In Chapter 7, we move on to the Turtle system’s compiler, examining the

mechanisms that it uses to translate the Pascal source language presented in Chapter 3

into the Turtle Machine code structures explained in Chapters 5 and 6.

76

Chapter 7 The Turtle Compiler

Having examined the virtual Turtle Machine, we must now turn to the Turtle compiler,

whose job is to turn source Pascal code (as described in Chapter 3) into Turtle “machine

code” or PCode (as described in Chapters 5 and 6). The compiler involves nearly 2,000

lines of Delphi Pascal,50 so obviously it would be inappropriate here to attempt to

consider it all in detail. Hence this chapter will focus only on the compiler’s overall

structure and processes, and on points of sufficient generality to be of educational

interest independently of the specific environment and programming language used. It

aims to provide not only an explanation of the compiler’s processes, but also an

illustration of how the system can provide a vehicle for presenting compiling techniques

to students in a relatively accessible manner, without any ascent to the level of

abstraction typically demanded by textbooks on compilation theory.

7.1 Standard Compilation Subtasks

Standard accounts of compilation typically divide the process conceptually into some

combination of the following set of subtasks:51

(a) Lexical analysis, handled by a “scanner” which decomposes the source text into

individual lexical units (e.g. treating “>=”, and whole words, as single such units).

(b) Screening, which refines the output of the lexical analysis by processes such as the

elimination of units that are not part of the execution code (e.g. separators and

comments), and distinguishing between source words that are mere identifiers, and

those that are keywords or reserved words of the language (e.g. “begin”).

50 Out of a system total of around 6,500 lines of Delphi Pascal, plus another 1,000 lines or so of

interface (i.e. Windows “form”) specifications.

51 See for example Aho and Ullman [3], ch. 1; Bornat [14], ch. 1; Wilhelm and Maurer [137],

ch. 6. The description here is based mainly on the last of these, which is the most detailed and up-to-

date, incorporating various terminological distinctions (e.g. between a scanner and a screener, deriving

from DeRemer [37]) that have become widespread since the earlier books were written.

77

(c) Syntax Analysis, which parses the output of the screener to produce a syntax tree

for the source program, determining its syntactic structure. This tree may be stored

explicitly within the compiler, or it may be an implicit abstraction from the

compiler’s behaviour as it traverses the source code, processing as it goes.

(d) Semantic Analysis, “decorating” the syntax tree with semantic information such as

type assignments, and performing appropriate checks for consistency.

(e) Machine-Independent Optimisation, aiming to perform transformations on the

decorated syntax tree to increase the efficiency of the resulting program.

(f) Address Assignment, the first of the “synthesis” (as opposed to “analysis”) stages

that take account of the specific machine architecture, here involving such

considerations as word length and the potential for data packing.

(g) Code generation, which finally creates the object code for the target machine,

selecting appropriate command sequences and use of internal registers etc.

(h) Machine-Dependent Code Improvement, focused mainly on local optimisation

rather than the sort of global considerations typically involved at stage (e).

For reasons of efficiency and convenience, however, these processes are not usually

separated into independent sequential modules, and traditionally a common approach

has been to aim for a two-pass compiler (e.g. Bornat [14], p. 17), in which the first

“pass” through the program performs the bulk of the “analysis” – phases (a) to (d) if not

(e) also – and then the second “pass” performs the “synthesis” that remains to be done.

However what mainly drives the separation of the passes here is not so much the

conceptual distinction between analysis and synthesis, but rather the separation of

machine-independent from machine-dependent considerations, to avoid the runaway

complexity that would result from attempting to deal with both of these together where

they interact, notably in the optimisation stages (e) and (h). Where no code optimisation

is required, it is often simplest to perform the synthetic code generation together with

the analysis, resulting in a single-pass compiler.52

52 See for example Wilhelm and Maurer [137], p. 232. Even a single-pass compiler is unlikely to

process the program purely sequentially, since there is often a need for backpatching (e.g. Aho and

Ullman [3], p. 9). Typical examples of such backpatching occur within the Turtle compiler when

control structures are terminated (described in §7.5 below), and also when a compiling “sub-procedure”

78

7.2 The Structure of the Turtle Compiler

The Turtle compiler, like the Turtle virtual machine, aims as its first priority for easy

comprehensibility rather than efficiency, so for example no attempt is made to optimise

the code at any stage, and all source language constructs are consistently “translated” in

the same manner (as outlined in Chapters 5 and 6). Moreover since it handles only

integer data, there is no need for type checking (cf. §3.1.2 above) or any other kind of

semantic processing intermediate between syntactic analysis and code synthesis. All this

enables code generation to be integrated very easily into the syntax analysis, so that a

one-pass compiler would be fairly straightforward to implement. However in order to

facilitate the creation of lexeme-indexed analysis tables that are transparently accessible

(see §§7.3-4 below), the Turtle compiler operates in two passes, with the first

combining lexical analysis and screening (subtasks (a) and (b)), after which the initial

analysis tables can be created, while the second pass integrates syntax analysis, address

assignment, and code generation (subtasks (c), (f) and (g)) in a manner that avoids any

need for an explicitly stored syntax tree. Again partly for educational reasons, this

second pass is itself modularised into three fairly independent levels, each being handled

by a different mechanism which can be learned and understood separately as

complementary compiling techniques:

 Compilation subtask Mechanism involved in subtask

PASS 1

 §7.3

Lexical Analysis

Screening

Simple finite state machine (FSM)

Tokenisation

PASS 2

 §7.4

 §7.5

 §7.6

Parsing and Code Generation for:

Program Block Structure

Control Structures

Commands and Expressions

Complex FSM plus counter

Pushdown automaton (PDA)

Recursive descent

makes reference to a (parent) procedure that has not yet itself been compiled. Grune et al. [47] point

out that increased memory capacity has recently led to the development of “broad” compilers, which

read the entire program and then transform it, removing any need for multiple passes (pp. 26-7).

79

7.3 Lexical Analysis and Screening

The first pass of the compiler involves the lexical analyser (function lexanalyse), which

works through each line of the source code identifying the lexical items (“lexemes”) it

contains, and assigning an appropriate lexical type to each such item. Categorising the

lexemes in this way greatly facilitates the later processes, by removing numerous

complications. For example at this stage the Pascal “keywords” or “reserved words” are

picked out (since the lexical analyser is integrated with a “screener” cf. §7.1 above), so

that from now on the compiler, when checking for, say, the keyword “else” to match

with a previous “if … then”, does not need to look for the four characters “e” “l” “s”

“e” (with no other contiguous letters or digits etc.), but need only check for a single

lexeme of type ltElse. Because the keywords are recognised at the beginning of

compilation, and henceforth treated as “tokenised” lexemes rather than as strings, they

cannot be used in any other capacity (e.g. “from” cannot be an “identifier” and hence

cannot be the name of a variable); indeed it is this fixedness of interpretation that

characterises a Pascal “reserved word”.53

Each keyword has its own lexical type; thus “and” is of type ltAnd, “begin” is of

type ltBegin and so on through “do”, “downto”, “else”, “end”, “for”, “if”, “mod”, “not”,

“or”, “procedure”, “program”, “repeat”, “then”, “to”, “until”, “var”, “while”, and “xor”.

The other lexical types are listed in the following table:

53 Although the terms “keyword” and “reserved word” are often (as here) used interchangeably,

there is a subtle difference between them in the case of a language which prevents certain words from

being used as identifiers (i.e. they are reserved) but which does not use them itself (so they are not

strictly “keywords”). For simplicity the Turtle system reserves only its own keywords, though there

would be an argument for reserving also such words as “case”, “function” or “while” that are both

reserved words and keywords within Delphi and other full implementations of Pascal.

80

ltSemicolon ; ltMinus − (ambiguous) ltDot . (after final “end”)

ltComma , ltSubt − (binary) ltInt decimal integer

ltLbkt (ltNeg − (unary) ltHex hexadecimal integer

ltRbkt) ltEqual = ltIdK identifier or keyword

ltColon : ltNotEq <> ltId identifier

ltAsgn := ltLess < ltNull no type yet assigned

ltPlus + ltMore > ltError illegal character

ltMult * ltLessEq <=

ltDivide / ltMoreEq >=
{comments} are completely ignored;
illegal characters generate an error

The process that assigns these lexical types is very straightforward, reading through the

source text one character at a time, and sending each character through a modified finite

state machine structure which either makes an immediate decision about the lexical type

(e.g. in the case of semicolons and brackets), or else moves to an appropriate “pending”

state to await the next character(s) and process accordingly. When a “<” is

encountered, for example, the FSM moves to state stLess, in which:

• if the next character is either “>” or “=”, it is linked together with the “<” as a

single lexeme of type ltNotEq (“<>”) or ltLessEq (“<=”) respectively;

• otherwise, the “<” is recorded as of type ltLess.

In the former case, the next character to be sent through the FSM will be the one

following “>” or “=”; in the latter case, the character just tested (as not being either “>”

or “=”) will itself be resent through the FSM. But either way, the FSM reverts back to

the default initial state (stNew) before continuing.

81

As shown on the right here, the lexical

analysis results can be inspected, after

compilation has taken place, in the “String” and

“Type” columns of the “Syntax” table which is

one of the Visual Compiler displays (introduced

in §2.3 above). In this table the types are

usually shown as the literal expressions

themselves (e.g. “>=” rather than “ltMoreEq”),

but where different expressions can be of the

same type, that type is indicated using a

standard word such as “identifier” or “integer”.

Some lexical types involve various complications, for example ltInt and ltHex must

be sequences of valid decimal or hexadecimal digits, and generate error messages if

illegal characters appear in the sequence (most other error messages produced by the

lexical analyser concern characters that are illegal wherever they appear, such as “&”).

But the most complicated type to deal with is ltIdK, a temporary place-holder (in effect

filling the gap between pure syntax analysis and screening) which indicates a sequence of

alphanumeric characters starting with a letter; when the character sequence is complete,

it is looked up in the keyword list to establish its nature. Another place-holder type is

ltMinus, signifying a “−” character which could be either a unary negative (as in

“x := −1”) or a binary subtraction (as in “x := y − z”). This ambiguity, however, is

resolved not by the lexical analysis, but by the recursive descent phase of the later syntax

analysis (cf. §7.6, especially note 61).

7.4 Parsing the Block Structure of the Program

The second pass of the compiler integrates syntax analysis and code generation,

controlled by the function syntax which is called repeatedly while working through the

sequence of lexemes created by the first pass. As outlined in §7.2, this task is broken

down into three levels, the first of which involves parsing the program’s large-scale

structure, identifying the “blocks” that constitute its procedures, sub-procedures, and

main body, and dealing with their associated declarations (including scope issues). This

top level of processing invokes, as necessary, the middle (§7.5) and bottom (§7.6)

Figure 14: Part of the "Syntax" table

82

levels, which together analyse and translate the source code lying between the “begin”

and “end” that bracket each block’s body. But this interplay between the levels is

almost entirely one way, enabling the block structure parsing to be treated as an

independent task which is sufficiently straightforward to be handled almost completely

by a finite state machine (FSM). Moreover where the task goes beyond the capacities of

an FSM, this can be remedied by the addition of a single counter (to track the depth of

nested procedures), resulting in the simplest possible form of “counter machine” (e.g.

Krishnamurthy [69], p. 81). Handling the parsing in this way illustrates nicely how

abstract machines can reduce a potentially confusing problem to a transparent relative

simplicity, and thus provides an excellent opportunity to motivate students’ interest in,

and appreciation of, such machines (just as the use of stacks within the Turtle Machine

can motivate interest in and appreciation of them, cf. note 36 in §5.1).

Turtle’s FSM for analysing the block structure of Pascal source code is represented

by Figure 16 on page 83, labelled with the same state names that are used in the

“Syntax” table of the Visual Compiler display, pictured below. (In the Delphi code that

implements the compiler these “syntax state” names are prefixed with “ss” to ensure

uniqueness and indicate their type, but such prefixes are ignored here except when

explicitly quoting code.) Most of the transitions between states in this FSM involve

more than a single lexeme; moving from ProcVName to ProcVSemi, for example,

requires a colon, followed by an identifier, followed by a semicolon. But it would be

wasteful and confusing to add states to the FSM corresponding to each of the

intermediate stages of such a sequence, because once the colon has been identified, the

only legal continuation is an identifier

followed by a semicolon. Hence this

part of the compiler is implemented in

a way that directly mirrors the

structure of the FSM, as illustrated by

that part of the Delphi Pascal code

(itself part of a larger case statement)

which handles the situation where the

syntax state is ProcVName:

Figure 15: FSM states in the "Syntax" table

Start PROC

 ProgSemi ProcVSemi ProcVName ProcSemi

PROG VarName ProcName ParType

ProgEnd VarSemi ProcBkt ParName

All statements in the body
of the main program are
processed in state PROG

begin

All statements within the
body of any procedure are
processed in state PROC

: id;

, id
procedure
 id

end; begin

begin

;

procedure
id

; :
id

var id

id

procedure
 id

procedure
id

var
 id

idend
 .

program
 id ;

 :
 id
 ;

begin

, id

(
var
id

, id

);
procedure

id

var id
var id

end;

Figure 16: Finite State Machine to analyse the block structure of Pascal source code

83

84

case lexitems[lexnum].lextype of

 ltComma: nextlex(ltId,ssProcVName,

 'Comma must be followed by a variable name');

 ltColon: begin

 if nextlex(ltId,ssProcVName,

 '":" must be followed by a type name') then

 if nextlex(ltSemicolon,ssProcVSemi,

 'VAR declaration must be followed by ";"') then

 addvtype(lexnum-1)

 end;

 else

 begin

 result:='Variable must be followed by a type specification';

 dec(lexnum)

 end

end {case}

Here lexnum is the index of the next lexical item (lexeme) to be processed, within the

array lexitems, and hence lexitems[lexnum].lextype gives its identified lexical type (as

discussed in §7.3 above). If that type is ltColon, then the nextlex function is called

twice, first checking that the following lexeme is of type ltId – i.e. an identifier – and

then that the next after that is of type ltSemicolon; to facilitate such iteration, nextlex

automatically increments lexnum as it goes. If both checks succeed, then a transition is

made to syntax state ProcVSemi, and the addvtype(lexnum: integer) routine is called –

this checks that the specified variable type (i.e. the identifier in question) is either

“integer” or “boolean”, and if so, assigns it to the variable (or list of variables)

concerned. If any of these various checks fails, then an appropriate error message is

given to report precisely where the failure occurred. The error location is usually given

by the value of lexnum at the point where it is located, but sometimes this needs to be

adjusted, as in the final else clause where “dec(lexnum)” ensures that the error message

for a missing type specification will be linked to the source line containing the variable

name itself rather than whatever lexeme generated the error.

Simple mechanisms of the sort just discussed, tied into the FSM state transitions,

deal with most of the parsing of block headers, but various processes need to go on

behind the scenes, “bookkeeping” and keeping track of the overall program structure.

For example the addvtype routine mentioned above presupposes the operation of a prior

addvar(lexnum: integer; isparam: boolean) routine, called whenever a new parameter

85

or variable name is declared (i.e. any transition to state ParName, ProcVName or

VarName), and which adds that name to a table into which the corresponding type can

later be inserted by addvtype. Recording of variable identifiers also brings the

complication of checking for non-duplication, which requires that issues of scope be

taken into account. This is done by means of a “procedure stack” which monitors the

nesting of procedures, with each procedure’s index being pushed when it starts (through

a transition to state ProcName) and popped when it finishes (through either of the

“end;” transitions from state PROC). The condition of the procedure stack also

determines the choice between the two possible “end;” transitions from state PROC

(which are shaded in Figure 16 on page 83 to indicate the deviation here from a pure

finite state machine to what is in effect a “1-counter machine”, the simplest kind of

pushdown automaton, with a single stack and only one symbol in its stack alphabet). If

the procedure stack is empty then a transition is made to ProgSemi, but otherwise to

ProcSemi, since the latter indicates a move into a parent procedure rather than to the

main program.

7.4.1 Generation of Procedure Code

Although code generation plays relatively little role in the processing of block structure,

it does feature when procedures start and finish. Just as any parameter or variable name

declaration triggers the addvar routine, so any procedure name declaration will call the

routine addproc(lexnum: integer) at the point of transition to state ProcName. This

routine checks the name for non-duplication and initialises a new procedure record,

primed so that parameters and variables can be bound to it by any immediately

subsequent calls to addvar and addvtype. These bindings then influence how code is

generated when the procedure body is reached with the transition to state PROC, which

calls the routine procbegin(lexnum: integer); this code deals with the Turtle Machine’s

activation of the procedure as described in §§6.3 and 6.5 (claiming Heap space and

pushing the Procedure Register), and the initialisation of local variables and unpacking

of parameters as illustrated in §6.6. Finally, when the procedure finishes with one of the

“end;” transitions mentioned above, the procend(lexnum: integer) routine is called to

insert the PCode required to terminate the procedure (releasing Heap space, popping the

Procedure Register, and performing an appropriate return jump etc.).

86

7.5 Parsing and Code Generation for Program
Control Structures

The middle level of parsing and code generation is concerned with the statement flow-

control and grouping structures that lie within the main program body, or within the

body of individual procedures; these mainly involve the keyword combinations

“if … then … else”, “repeat … until”, “for … do”, and “begin … end”. Unlike the top

level, this parsing task goes well beyond what can be dealt with by a simple FSM or

counter machine, in that the various keyword structures can be intermixed, and nested to

an arbitrary degree. Hence we resort instead to a pushdown automaton (PDA) that

operates a stack of pending operations, yet another abstract machine whose practical

behaviour and usefulness can be nicely illustrated by this form of compiler. The overall

behaviour of this automaton is represented by Figure 17 on page 87.54

54 Figure 17 is slightly simplified, in omitting a special test for null statements following “then”,
“else” and “do”. In structures such as “if x=1 then <action1> else <action2>” or “for
x:=1 to 10 do <action3>”, it is standardly permissible for any of the <action> statements to be
absent (i.e. null), and these structures can occur embedded within other structures, for example:
“repeat for x:=1 to 10 do {nothing}; if y<100 then y:=y*2 else {nothing}
until y>=100”. The Turtle compiler differs from standard Pascal in treating null statements as
illegal if they are immediately followed by a semicolon, since in novice programs such semicolons are
almost invariably misplaced. But other null statements within these structures need to be compiled
appropriately, and for this purpose the Turtle compiler makes the following test as soon as each new
lexeme is read. If either the new lexeme is in [until, end] and the top pending operation on the stack
is in [poTo, poDownTo], or the new lexeme is in [until, end, else] and the top pending operation is
in [poIfThen, poIfElse], then the lexeme pointer is decremented by 1 (so the new lexeme will be read
again next time round the loop) and processing continues within the pushdown automaton from
immediately below the “Process Command” node, as though a command had just been dealt with.

87

ltEnd

other

READ
<expr>
ltThen

PUSH
poRepeat

READ
ltId :=
<expr>

PUSH
poBegin

POP
poRepeat

ltIf ltFor ltRepeat ltBegin ltUntil ltId

READ

ltTo ltDownTo

READ
<expr>
ltDo

READ
<expr>
ltDo

PUSH
poDownTo

PUSH
poTo

PUSH
poIfThen

READ
<expr> poBegin

LOOK
AHEAD

READ
ltElse

ltElse

PUSH
poElse

poElse,
poTo,

poDownTo

PUSH

other

poIfThen

Process
Command

POP

READ next lexeme

POP

End of block

Stack
empty

Figure 17: Pushdown Automaton to analyse program control structures

88

The main loop of the automaton begins with the reading of a tokenised lexeme

which – if the program is syntactically correct – must be either an identifier or one of the

keywords “if”, “for”, “repeat”, “begin”, “until”, or “end”.55

• “if” must be followed immediately by an expression (cf. §7.6) and the keyword

“then”;56 assuming these are found, the PDA loops back to the beginning, but

first pushes poIfThen (one of the constants of enumerated type TPendOp) onto

the stack of pending operations. Immediately following the processing of the

expression, a PCode IFNO command is generated, to jump around the “then”

part of the conditional structure (cf. §5.3.2).57

• “for” must be followed immediately by an identifier (which must be a declared

integer variable name), then the assignment operator “:=”, then an expression,

and then one of the keywords “to” or “downto” followed by another expression

and the keyword “do”. Again assuming all these are found, the PDA loops back

having pushed poTo or poDownTo respectively onto the stack. Meanwhile,

PCode commands are generated to store the first expression’s value in the

counting variable, and then (after the processing of the second expression), to

test the counting variable against the second expression’s value and branch with

an IFNO command accordingly (cf. §5.3.4).58

• “repeat” and “begin” each simply pushes the corresponding pending operation

(poRepeat and poBegin respectively) onto the stack before looping back.

55 Or a semicolon, which just loops back without any further action and so is effectively ignored.

The treatment of semicolon statement separators is not discussed here because they have little relevance

to the PDA operation, but the compiler of course checks that they occur appropriately. (It also combines

with the auto-formatter to remove redundant semicolons.)

56 This is the meaning of the “READ <expr> ltThen” box in the PDA diagram. Here and

elsewhere, the diagram shows only the syntactically legal options; if the syntactic constraints are not

respected, the compiler will generate an appropriate error message and terminate.

57 Since the extent of the “then” part is not yet known, however, this IFNO instruction is given a

temporary dummy argument which will in due course be backpatched as in (c) below.

58 This IFNO instruction is given a dummy argument which will be backpatched as in (b) below.

89

• “until” pops the top pending operation from the stack, and checks that this is

poRepeat, before going on to read an expression (which specifies the until

condition); then a PCode IFNO command is generated to branch back to the

pcode line where the “repeat” occurred, depending on the expression’s value (cf.

§5.3.3).59 “end” likewise pops the stack, checking that either it is empty (in

which case the “end” signifies the finish of the current program block) or else

that the popped pending operation is poBegin. These checks ensure that the

relevant syntactic structures have been properly nested, so that each “until”

matches with a previous “repeat”, and each “end” with a previous “begin”.

• An identifier indicates an assignment statement, a Turtle Graphics command, or a

procedure call – the main processing of these is dealt with in §7.6.1 below.

As the diagram shows, the last two cases here (encompassing “until”, “end”,

assignment statements, Turtle Graphics commands, and procedure calls) do not

immediately loop back to read the next tokenised lexeme, because before doing this a

check needs to be made to see whether the current statement (which may be a statement

sequence bracketed by “repeat … until” or “begin … end”) is within the immediate

scope of a conditional or a “for” loop. This check is carried out by popping the top

pending operation from the stack, and what happens next depends on the nature of this

pending operation.

(a) If the pending operation is poElse, then the conditional structure is terminated by

backpatching the argument to the PCode JUMP instruction which jumps around the

“else” part (cf. §5.3.2).

(b) If the pending operation is poTo (or poDownTo), then the counting loop structure is

terminated by generating PCode commands to load and increment (or respectively

decrement) the counting variable before the final JUMP; the argument to the IFNO

instruction at the beginning of the structure is also backpatched (cf. §5.3.4).

59 This implies that the relevant code line number was recorded within the poRepeat pending

operation when it was pushed onto the stack. Every pending operation is in fact stored as a record

structure which includes both an item of type TPendOp and also a code line reference.

90

(c) If the pending operation is poThen, the complier looks ahead to see whether the

next lexeme is “else”; if so, that “else” is read, poElse is pushed onto the pending

operations stack, and a PCode JUMP command is generated to jump around the

“else” part of the conditional structure.60 Finally, whether or not the next lexeme

was “else”, the argument to the IFNO instruction at the beginning of the conditional

structure is backpatched to branch around the “then” part (cf. §5.3.2).

(d) If the pending operation was anything other than poElse, poTo, poDownTo, or

poIfThen, it is pushed back onto the stack of pending operations.

In cases (a) and (b), and also case (c) where there is no “else”, the process of popping

the top pending operation from the stack continues, as shown in Figure 17. Thus at this

point in the pushdown automaton, it is possible for several pending operations to be

dealt with in turn, reflecting the fact that where conditional and counting loop structures

are nested, a number of them can terminate together.

As the program is parsed, the

PDA stack is shown in the

“Syntax” table of the Visual

Compiler, following “PROC”

or “PROG” depending on the

FSM state. This table also

shows the calculated indents

which are to be used if the

program is auto-formatted.

60 Though yet again, since the extent of the “else” part is not yet known, this JUMP instruction is

given a dummy argument which will in due course be backpatched as in (a) above. Note that this

treatment of conditionals provides a resolution of the notorious “dangling else” problem which besets

grammar-based parsers, since any “else” will automatically be paired with the nearest previous eligible

“if”, in accordance with both standard and Delphi Pascal (e.g. “if <a> then if then <c>

else <d>” will be disambiguated as “if <a> then begin if then <c> else <d> end”).

 Figure 18: PDA stack and indents in the "Syntax" table

91

Simple

Simple

=

<>

<

>

<=

>=

Expression

Term

Term

+ - or xor

Simple Expression

Factor

Factor

* / and

Term

mod

Expression

-

not

(

Identifier

)

Factor

Integer HexInt

Factor

Figure 19: Syntax diagrams for parsing by recursive descent

92

7.6 Parsing and Code Generation for Individual
Commands and Expressions

The lowest of the three levels of parsing and code generation deals with individual Turtle

Graphics or assignment commands and procedure calls, and also the processing of

arithmetical or boolean expressions. We shall deal with the latter first, for as we have

seen, such expressions not only occur within individual commands, but also play a

crucial role within the conditional and looping structures discussed in §7.5.

To minimise complexity, this level of the compiler uses a fairly straightforward

implementation of the method of recursive descent, combining code generation with

parsing in a manner that directly reflects the relevant syntactical structures. These

structures are standardly represented in syntax diagrams such as those on the previous

page – note that they are mutually recursive, since an expression always includes a

simple expression, which in turn always includes a term, which in turn always includes a

factor, which in turn can include either an expression or a factor. However a factor can

also be an individual identifier (i.e. a variable name), an integer, or a hexadecimal integer

(all of which have previously been identified and tokenised as described in §7.3 above),

and this is where the recursion in any particular case ultimately stops.

To illustrate how all this is implemented, here is the code that compiles a factor,

enclosed within a function of the same name:

 function factor(start: integer): integer;

 begin

 case lexitems[start].lextype of

 ltId,ltInt,ltHex: begin

 addloadstack(numcommands,start);

 result:=start+1

 end;

continued on next page

93

 ltMinus: begin

 lexitems[start].lextype:=ltNeg; {disambiguate}

 result:=factor(start+1);

 addpcode(numcommands,pcNeg)

 end;

 ltNot: begin

 result:=factor(start+1);

 addpcode(numcommands,pcNot)

 end;

 ltLbkt: begin

 result:=expression(start+1);

 if (result>0) then

 begin

 if (lexitems[result].lextype=ltRbkt) then

 inc(result)

 else

 result:=0

 end

 end;

 else result:=0

 end

 end; {function factor}

When the function is called, start specifies the index of the next lexeme to be processed,

i.e. the lexeme which is expected to be the beginning of a factor. As the syntax diagram

indicates, a factor can be simply an identifier, integer, or hexadecimal integer – in any of

these cases, the procedure addloadstack(numcommands,start) is called to make

appropriate checks (e.g. that an identifier is a defined variable), and if these checks are

passed, to generate the necessary PCode for loading the relevant item onto the Program

Stack. Then start+1 is returned as the value of the factor function, to enable syntactic

analysis to continue from the next lexeme.

If the next lexeme is of lexical type ltMinus or ltNot, then as the syntax diagram

indicates, this should be followed by a factor. Hence in this case the function calls itself

from the following lexeme with result:=factor(start+1), and when this returns,

generates the single PCode instruction (pcNeg or pcNot) corresponding to the operator

lexeme.61 The point here is that the recursive call, if successful, will not only parse the

61 Note that the code dealing with ltMinus disambiguates this to ltNeg (unary negation), because

94

factor starting at lexeme start+1, but will also generate PCode designed to leave that

factor’s result on the Program Stack (as in the previous paragraph). Hence that result

can be negated, as implied in the source code, by applying an appropriate PCode

negation operator (i.e. pcNot or pcNeg) that acts on the top Program Stack value.

Finally, if the lexeme with which the factor starts is a left-bracket, the system

expects this to be followed by an expression and then a right-bracket. So the function

expression(start+1) is called in order to identify, and generate PCode for, the expression

in question. If this fails, 0 will be returned and passed on also as the return value of the

factor function, 0 being generally used to signify a syntactic error. But if parsing of the

expression succeeds, the value returned by expression(start+1) will be the index of the

next lexeme after the end of the identified expression; accordingly a check is then made

to ensure that this lexeme is indeed a right-bracket, in which case inc(result) increments

the function’s return value to point to the lexeme after that bracket. Note that brackets

in themselves (unlike identifiers, integers, negation operators etc.) do not yield any

specific PCode instructions. They simply ensure that the PCode generated by the

expressions that they enclose corresponds appropriately to the sequence of processing

indicated by the bracketing hierarchy.

7.6.1 Code Generation for Commands and Procedure Calls

The processing of individual Turtle Graphics commands, assignments, and procedure

calls comes into play whenever the pushdown automaton illustrated on page 87

encounters an identifier at the beginning of its main loop. Assuming the program is

syntactically correct, there are then three possibilities which are checked in turn:62

the other possible interpretation of ltMinus (namely ltSubt for binary subtraction) cannot occur as the

first lexeme of a factor. See §7.3 for a brief discussion of this ambiguity.

62 The order of processing shown below allows for the possibility that a variable or procedure will

be declared with a name which is also a Turtle Graphics instruction, and if so, the identifier will be

interpreted accordingly when that name is used within the scope of the declaration (i.e. Turtle Graphics

instructions are not reserved words).

95

• The identifier is a recognised (and in scope) variable name, in which case it

should be followed by the assignment operator “:=” (lexical type ltAsgn) and an

expression.

• The identifier is a declared (and in scope) procedure name, in which case it

should be followed by an appropriate number of parameters in brackets.

• The identifier is a Turtle Graphics command name, in which case it should be

followed by an appropriate number of parameters in brackets.

In the first case, the expression is processed by the method described in §7.6, which

generates the necessary PCode for leaving the result of the expression on the Program

Stack. Then depending on the nature of the variable, an appropriate store command

(“STVG”, “STVV” or “STVR”) is generated to perform the assignment.

The second and third cases are initially treated in the same way – the opening

bracket is checked, and then the parameter expressions, separated by commas, are

repeatedly processed as in §7.6 until the final bracket is encountered (any deviation from

this pattern producing an error message). The PCode thus generated will leave one item

on the Program Stack for each expression encountered, and these will be passed as the

parameters for the procedure (cf. §6.6) or command (cf. §§5.1-2). Hence a test is made

to ensure that the number of parameters is correct, and if so, the necessary PCode is

added either to call the recognised procedure (as in §6.1) or to execute the relevant

Turtle Graphics command (see §5.1).

This concludes our detailed discussion of the Turtle Machine and its compiler,

which has been intended to show by example how relatively straightforward the system

is, enabling it to be used effectively as a vehicle for understanding, at a relatively early

stage, such fundamental concepts of Computer Science as machine code, stack

operations, compilation, recursive descent, and various automata. In Chapter 8 we

conclude by bringing the two main themes of the thesis together, and briefly examining

whether they may be more complementary than contrasting.

96

Chapter 8 Conclusion

8.1 The Value of Turtle as a Vehicle for Introducing
Computing Concepts

We have now seen two apparently distinct aspects of the Turtle system. On the one

hand, as discussed in Chapters 3 and 4 and summed up in §4.4, it can be used as a

teaching environment for novice programmers. On the other hand, as illustrated in

Chapters 5 to 7, it can be used as a vehicle for explaining the concepts of machine code

and compilation, presumably to more advanced students. So far, it might seem that

these two teaching tasks are largely unrelated, but I shall now conclude by suggesting

that in fact they are complementary, and that there may be unexpected benefits in having

a system that combines them.

8.1.1 Notional Machines

As discussed in §4.4, many students of programming – and not by any means only

novices – experience considerable difficulty in understanding flow of control within a

program. But Robins et al. point out that this can be overcome when they develop an

adequate mental model: “Many studies have noted the central role played by a model of

(an abstraction of) the computer, often called a ‘notional machine’ … to provide a

foundation for understanding the behaviour of running programs” ([111], p. 149, cf.

p. 158).63 Du Boulay [41] accordingly identifies the absence of an adequate notional

63 Studies listed by Robins et al. in this connection include du Boulay [41], du Boulay et al. [42],

Mayer [79], Hoc and Nguyen-Xuan [58], Mendelsohn et al. [84], and Cañas et al. [24]. The paper by

Ben-Ari [12] is also particularly interesting, because he links the philosophy of constructivism (cf. §1.2

above) with the need to teach a model, based on the unfamiliarity of algorithmic mechanisms within the

student’s pre-existing conceptual framework. “You have to construct a viable model that will enable

you to predict the outcome of any operation on the model … The relevance for CSE is that courses …

must explicitly address the construction of a model … If the student does not bring a preconceived

model to class, then we must ensure that a viable hierarchy of models is constructed and refined as

learning progresses.” (p. 260).

97

machine as one of the five main sources of difficulty in programming (pp. 283-4). But if

so, then the two teaching aspects of the Turtle system are quite intimately connected

after all. For one obvious way of helping students to develop an adequate mental model

of computer execution is to provide an easily accessible virtual machine to study, one

that can handle the problematic looping and recursive control-flow structures, but which

in other respects is as straightforward to program as possible.

The natural objection to this suggestion is that learning about virtual machines and

low-level code, so far from reducing the problem, may prove even more confusing and

unpopular with students than learning about high-level programming. Certainly low-

level code is in some obvious respects more complex than the high-level equivalent, but

on the other hand it is less abstract and more obviously mechanical, which may tip the

balance if the student’s main problem lies in acquiring an adequate notional model of

execution. At any rate, there is some evidence that even novice students can cope with

machine code if due care is taken and appropriate learning tools provided. For example

the “breadth-first” curriculum described by Tucker et al. [131], developed on the basis of

the ACM/IEEE Computing Curricula 1991 report [1], successfully combined the

teaching of programming with an introduction to computer organisation using a simple

machine and assembly language simulator called “Marina”.64 This simulator was seen as

playing a key role in facilitating the computer organisation section (p. 54), helping to

make it one of the most popular in the curriculum (pp. 36-7, 39). Moreover the authors

stress that this was not at the cost of reducing the course to a shallow overview: “The

key factor is to organize the presentation well, introducing as much of it as is necessary

to give students a firm understanding of its principles … Avoid introducing a topic in a

survey fashion.” (p. 54). Turtle is clearly a potential vehicle for such a presentation.

64 Another interesting example is the PIPPIN machine described by Decker and Hirschfield [33],

which is explicitly designed for use with novice students, though its associated compiler, “Rosetta”, is

limited to the compilation of an assignment statement involving simple expression evaluation.

98

8.1.2 Deep Understanding

Leaving aside the possible value of the Turtle Machine to novices, it has more obvious

potential in helping relatively advanced students to knit together the various aspects of

the discipline, which according to many writers is the key to robust “deep”

understanding (e.g. Marton and Säljö [78], Gibbs [44]). And again this seems to be

closely related to having an adequate notional machine, for it is striking how both

lecturers and students identify deep understanding with “having a mental picture” of

what is going on (Newton et al. [90], pp. 48, 51, cf. Robins et al. [111], pp. 140, 151).

Such a mental picture is far easier to acquire within a system whose workings are based

on a systematic and intuitive metaphor (cf. §1.2 above), and which – like Turtle’s visual

compiler – faithfully displays its inner workings consistently with that metaphor (cf. Pane

and Myers [95] section 5.2).

8.1.3 Automata Early

Although formal automata theory is generally considered far too abstract to be given a

place in the first year studies of Computing students, Chua and Winton [29] argue that

automata are best introduced early, in a way that emphasises their practical applicability,

in order to prepare the ground for later work by developing maturity in thinking about

them. Again this approach would give Turtle an obvious role, enabling the explanation

of machine execution to be combined with a discussion of some of the stages of

compilation, aided by the Visual Compiler display showing the ongoing state of the FSM

and PDA that it uses. Neither the FSM nor the PDA are overly complex, and both have

a very clear practical role in the compilation process, so this can be used to motivate an

appreciation of their more general practical value. It is interesting to speculate, for

example, what effect such a background might have had on students faced with the kind

of arithmetic expression evaluation tasks that led to such disappointing results in

McCracken et al. [83], where the lack of a confident understanding of stack structures

was seriously prejudicial.

99

8.1.4 Familiar Compilation

Courses on compilers are notoriously difficult and time-consuming, so that typically very

few students take them, and those that do are given the task of compiling an unfamiliar

“toy” language rather than the real thing (such languages include Haynes et al’s

ORACLE [54], Appelbe’s MINIPASCAL [6], Aiken’s Cool [4], Baldwin’s MinimL [10],

and numerous others with and without names). In this context there may be a real virtue

in both using the Turtle system to introduce programming to novices, and also later

returning to it when they come to consider the study of compilation. At least one hurdle

of unfamiliarity is thus removed, probably making the subject seem both more

approachable and more relevant.

8.2 Conclusion: The Achievements of this Work

The last few sections have been to some extent speculative, and the potential value of

the Turtle system in teaching about machine code, automata, and compilation is largely

independent of whether this can indeed also be closely related to the teaching of

introductory programming. My more fundamental claims about the Turtle Machine and

its workings are:

(A4) That it is simple enough for more advanced students to understand and to

learn from (and is indeed simpler in relevant respects than any machine of

comparable power that I know of).

(A5) Likewise its compiler, though in a sense relatively complex (because it

mixes parsing techniques rather than starting from a comprehensive

language grammar), presents the parsing process in a way that is easier to

grasp, and from which to learn widely applicable practical lessons, than the

more abstract treatments which dominate the teaching literature.

(A4) and (A5) here refer to the intended achievements listed in §1.7, the others of which

have already been presented earlier in the thesis. To recapitulate briefly, Chapter 1

argued the case for developing an integrated Turtle Graphics environment for novice

programming (A1), and this case was later strongly corroborated by the teaching

100

outcomes reported in Chapter 4. Chapter 2 gave a preview of the finished product,

while Chapter 3 justified the choice of source language (A2). The program itself, and

the feedback from its extensive practical use as presented in Chapter 4, testify to its

power, robustness, and attractiveness to students (A3). Chapters 5 and 6 then discussed

the Turtle virtual machine (A4), and Chapter 7 the compiler (A5). The visual interface

to these, illustrated both in §2.3 and §§7.3-5, significantly adds to their teaching value

(A6).

Overall, therefore, I am very satisfied with the outcome of this project, and feel that

the Turtle system is a worthwhile contribution to the teaching of Computing. I hope,

moreover, that it has gone at least some way to meeting the challenge laid down by

Holmes and Smith [59], to present both introductory and more advanced topics of

Computer Science in a way that is accessible to relative novices, “in a manner that will

capture the imagination of the learners” and convey the subject’s “scope, beauty, genius,

and fun” (p. 204).

101

References

Each item is followed by a bracketed list of the pages where reference is made to it within the thesis.

[1] ACM/IEEE Joint Curriculum Task Force (1991), Computing Curricula 1991, New York: ACM Press.

(97)

[2] Adair, G. (1984), “The Hawthorne effect: a reconsideration of the methodological artifact”, Journal of

Applied Psychology 69, pp. 334-45. (39)

[3] Aho, Alfred V. and Ullman, Jeffrey D. (1979), Principles of Compiler Design, Addison-Wesley

(originally published in 1977 by Bell Telephone Laboratories). (76, 77)

[4] Aiken, Alexander (1996), “Cool: a portable project for teaching compiler construction”, ACM SIGPLAN

Notices 31/7, pp. 19-24. (99)

[5] Alfonseca, Manual and Ortega, Alfonso, “Representation of fractal curves by means of L systems”

(1996), ACM SIGAPL APL Quote Quod 26/4, pp. 13-21. (119)

[6] Applebe, Bill (1979), “Teaching compiler development”, ACM SIGCSE Bulletin 11/1, pp. 23-7. (99)

[7] Ariga, Taeko and Tsuiki, Hideki (2001), “Programming for students of information design”, ACM

SIGCSE Bulletin 33/4, pp. 59-63. (9)

[8] Atwood, J. W., Jr., M. M. Burnett, R. A. Walpole, E. M. Wilcox, and S. Yang, “Steering programs via

time travel” (1996), IEEE Symposium on Visual Languages (Boulder, Colorado), pp. 4-11. (118)

[9] Baldwin, Doug (1996), “Discovery learning in Computer Science”, ACM SIGCSE Bulletin 28/1, pp.

222-6. (6)

[10] Baldwin, Doug (2003), “A compiler for teaching about compilers”, ACM SIGCSE Bulletin 35/1, pp.

220-3. (99)

[11] Bell, D. A. and Wichmann, B. A. (1971), “An ALGOL-like assembly language for a small computer”,

Software Practice and Experience 1, pp. 61-72. (12)

[12] Ben-Ari, Mordechai (1998), “Constructivism in computer science education”, ACM SIGCSE Bulletin

30/1, pp. 257-61. (3, 96)

[13] Bonar, J. and Soloway, E. (1989), “Preprogramming knowledge: a major source of misconceptions in

novice programmers”, in Soloway and Spohrer [126], pp. 325-53. (27)

[14] Bornat, Richard (1979), Understanding and Writing Compilers, Macmillan. (76, 77)

[15] Boyle, Tom (2000), “Constructivism: a suitable pedagogy for information and computer science?”,

1st Annual LTSN-ICS Conference (Edinburgh). (3-4)

[16] Bridges, Susan M. (1993), “Graphics assignments in discrete mathematics”, ACM SIGCSE Bulletin 25/1,

pp. 83-6. (119)

[17] Brilliant, Susan S. and Wiseman, Timothy R. (1996), “The first programming paradigm and language

dilemma”, ACM SIGCSE Bulletin 28/1, pp. 338-42. (7)

102

[18] Bruce, Kim B., Andrea Danyluk, and Thomas Murtagh (2001), “A library to support a graphics-based

object-first approach to CS1”, ACM SIGCSE Bulletin 33/1, pp. 6-10. (9)

[19] Brusilovsky, P., E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P. Miller (1994), “Mini-languages: a

way to learn programming principles”, Education and Information Technologies 2, pp. 65-83. (5, 23)

[20] Brusilovsky, P., A. Kouchnirenko, P. Miller, and I. Tomek (1994), “Teaching programming to novices: a

review of approaches and tools”, in T. Ottmann and I. Tomek (eds), Educational Multimedia and

Hypermedia: Proceedings of ED-MEDIA 94, Vancouver: Association for the Advancement of Computing

in Education, pp. 103-10. (23)

[21] Burton, Philip J. and Bruhn, Russel E. (2003), “Teaching programming in the OOP era”, ACM SIGCSE

Bulletin 35/2, pp. 111-14. (7)

[22] Callear, David (2000), “Teaching programming: some lessons from Prolog”, 1st LTSN-ICS Conference

(Edinburgh). (7)

[23] Calloni, B. and Bagert, D. (1994), “ICONIC programming in BACCII vs. textual programming: which is

a better environment?”, ACM SIGCSE Bulletin 26/1, pp. 188-92. (117)

[24] Cañas, J. J., T. Bajo, and P. Gonzalvo (1994), “Mental models and computer programming”,

International Journal of Human-Computer Studies” 40, pp. 795-811. (96)

[25] Cantù, Marco (1997), “Comparing OOP languages: Java, C++, Object Pascal”, published on the Web at

www.marcocantu.com/papers/ooplang.htm. (7)

[26] Caspersen, Michael E. and Christensen, Henrik Baerbak (2000), “Here, there and everywhere – on the

recurring use of Turtle Graphics in CS1”, Proceedings of the 4th Australian Computing Education

Conference, ACE2000 (Melbourne), pp. 34-49. (9)

[27] Chalk, Peter (2000), “Webworlds – Web-based modeling environments for learning software

engineering”, Computer Science Education 10, pp. 39-56. (118)

[28] Chalk, Peter, Tom Boyle, Poppy Pickard, Claire Bradley, Ray Jones, and Ken Fisher (2003), “Improving

pass rates in introductory programming”, 4th Annual LTSN-ICS Conference (Galway), pp. 6-10. (41)

[29] Chua, Y. S. and Winton, C. N. (1987), “Teaching theory of computation at the junior level”, ACM

SIGAPL APL Quote Quad 17/4, pp. 69-78. (98)

[30] Committee on Information Technology Literacy (1999), Being Fluent with Information Technology,

Washington DC: National Academy Press. (1)

[31] Cooper, Stephen, Wanda Dann, and Randy Pausch (2003), “Using animated 3D graphics to prepare

novices for CS1”, Computer Science Education 13, pp. 3-30. (5, 43)

[32] Dann, Wanda, Stephen Cooper, and Randy Pausch (2000), “Making the connection: programming with

animated small world”, ACM SIGCSE Bulletin 32/3, pp. 41-4. (5)

[33] Decker, Rick and Hirshfield, Stuart (2001), “The PIPPIN machine: simulations of language processing”,

Journal of Educational Resources in Computing 1, pp. 4-17. (97)

[34] Deek, Fadi P. (1999), “The software process: a parallel approach through problem solving and program

development”, Computer Science Education 9, pp. 43-70. (41)

[35] Deek, Fadi P. and McHugh, James A. (1998), “A survey and critical analysis of tools for learning

programming”, Computer Science Education 8, pp. 130-78. (117)

103

[36] DePasquale, Peter J. (2002), “Subsetting language elements in novice programming environments”,

Proceedings of RESOLVE 2002 (Columbus, Ohio), pp. 108-11. (23)

[37] DeRemer, Franklin L. (1976), “Lexical analysis”, in Friedrich L. Bauer and Jürgen Eickel (eds.),

Compiler Construction, An Advanced Course, second edition, Springer Verlag (first edition published in

1974), pp. 109-120. (76)

[38] Dicheva, D. and Close, J. (1996), “Mental models of recursion”, in Journal of Educational Computing

Research 14, pp. 1-23. (42)

[39] Dijkstra, Edsger W. (1989), “On the cruelty of really teaching Computing Science”, Communications of

the ACM 32/12, pp. 1398-404. (2)

[40] Donovan, Steve (2001), C++ By Example, Que. (9)

[41] du Boulay, B. (1989), “Some difficulties of learning to program”, in Soloway and Spohrer [126], pp. 283-

99. (23, 41, 96-7)

[42] du Boulay, B., T. O’Shea, and J. Monk (1989), “The black box inside the glass box: presenting

computing concepts to novices”, in Soloway and Spohrer [126], pp. 431-46. (23, 96)

[43] Eisenberg, M., M. Resnick, and F. Turbak (1987), “Understanding procedures as objects”, in Olson,

Sheppard, and Soloway [93], pp. 14-32. (23)

[44] Gibbs, G. (1994), Improving Student Learning: Theory and Practice, Oxford: Oxford Centre for Staff

Development. (98)

[45] Glinert E. and Tanimoto, S. (1984), “Pict: an interactive graphical programming environment”, IEEE

Computer 17, pp. 7-25. (117)

[46] Green, T. R. G., R. K. E. Bellamy, and J. M. Parker (1987), “Parsing and gnisrap: a model of device

use”, in Olson, Sheppard, and Soloway [93], pp. 132-46. (8)

[47] Grune, Dick, Henri E. Bal, Ceriel J. H. Jacobs, and Koen G. Langendoen (2000), Modern Compiler

Design, Wiley. (78)

[48] Guimaraes, M., C. de Lucena, and M. Cavalcanti (1994), “Experience using the ASA algorithm teaching

system”, ACM SIGCSE Bulletin 26/4, pp. 45-50. (117)

[49] Guzdial, Mark (1993), “Software-realized scaffolding to facilitate programming for science learning”,

Interactive Learning Environments 4, pp. 1-44. (2, 41)

[50] Hadjerroult, Said (1998), “Java as first programming language: a critical evaluation”, ACM SIGCSE

Bulletin 30/2, pp. 43-7. (7)

[51] Hagan, Dianne and Markham, Selby (2000), “Does it help to have some programming experience before

beginning a Computing degree program?”, ACM SIGCSE Bulletin 32/3, pp. 25-8. (43)

[52] Harel, I. and Papert, S. (1990), “Software design as a learning environment”, Interactive Learning

Environments 1, pp. 1-32. (2)

[53] Hartley, James and Greggs, Michael A. (1997), “Divergent thinking in Arts and Science students:

Contrary Imaginations at Keele revisited”, Studies in Higher Education 22, pp. 93-7. (6)

[54] Haynes, William R. Jr., Charles E. Hughes and Charles P. Pfleeger (1977), “Oracle: a tool for learning

compiler writing”, ACM SIGCSE Bulletin 9/7, pp. 37-51. (99)

104

[55] Hazzan, Orit (2003), “How students attempt to reduce abstraction in the learning of mathematics and in

the learning of computer science”, Computer Science Education 13, pp. 95-122. (12)

[56] Hoc, J. M. (1989), “Do we really have conditional statements in our brains?”, in Soloway and Spohrer

 [126], pp. 179-90. (41)

[57] Hoc, J. M., T. R. G. Green, R. Samurçay, and D. J. Gillmore, eds. (1990), Psychology of Programming,

Academic Press. (contains [58], [84], [112])

[58] Hoc, J. M. and Nguyen-Xuan, A. (1990), “Language semantics, mental models and analogy”, in Hoc et

al. [57], pp. 139-56. (96)

[59] Holmes, Geoffrey and Smith, Tony C. (1997) “Adding Some Spice to CS1 Curricula”, ACM SIGCSE

Bulletin 29/1, pp. 204-8. (100)

[60] Jarc, Duane J. (1992), “Ada, Pascal’s replacement for introductory courses in computer science”,

Proceedings of the ACM Conference on TRI-Ada (Orlando, Florida), pp. 126-34. (7)

[61] Jenkins, Tony (2001), “Teaching programming – a journey from teacher to motivator”, 2nd Annual LTSN-

ICS Conference (London). (41, 42)

[62] Jenkins, Tony (2002), “On the difficulty of learning to program”, 3rd Annual LTSN-ICS Conference

(Loughborough). (41)

[63] Jenkins, Tony (2003), “The first language – a case for Python?”, 4th Annual LTSN-ICS Conference

(Galway). (7)

[64] Jenkins, Tony and Davy, John (2001), “Diversity and motivation in introductory programming”, Italics 1.

(41)

[65] Jensen, Kathleen and Wirth, Niklaus (1991), Pascal User Manual and Report: ISO Pascal Standard,

fourth edition revised by Andrew B. Mickel and James F. Miner, Springer Verlag (originally published as

the Pascal User Manual and Report by Jensen and Wirth, 1974). (11)

[66] Kahney, H. (1989), “What do novice programmers know about recursion?”, in Soloway and Spohrer

 [126], pp. 209-28. (42)

[67] Keller, John M. (1983), “Motivational design of instruction”, in Charles M. Reigeluth (ed.), Instructional

Design Theories and Models – An Overview of the Current Status, Lawrence Erlbaum Associates,

pp. 383-434. (42)

[68] Kessler, C. M. and Anderson, J. R. (1989), “Learning flow of control: recursive and iterative procedures”,

in Soloway and Spohrer [126], pp. 229-60. (42)

[69] Krishnamurthy, E. V. (1983), Introductory Theory of Computer Science, Macmillan. (82)

[70] Kurland, D. M., R. D. Pea, C. Clement, and R. Mawby (1989), “A study of the development of

programming ability and thinking skills in high school students”, in Soloway and Spohrer [126],

pp. 83-112. (3, 42)

[71] Levy, Dalit (2001), “Insights and conflicts in discussing recursion: a case study”, Computer Science

Education 11, pp. 305-22. (42)

[72] Lewis, C. and Olson, G. M. (1987), “Can principles of cognition lower the barriers to programming?”, in

in Olson, Sheppard, and Soloway [93], pp. 248-63. (23)

105

[73] Lewis, Stuart and Mulley, Gaius (1998), “A comparison between novice and experienced compiler users

in a learning environment”, ACM SIGCSE Bulletin 30/3, pp. 157-61. (119)

[74] Liffick, Blaise W. and Aiken, Robert (1996), “A novice programmer’s support environment”, ACM

SIGCSE Bulletin 28/SI, pp. 49-51. (6)

[75] Linn, M. C. and Dalbey, J. (1989), “Cognitive consequences of programming instruction”, in Soloway

and Spohrer [126], pp. 57-81. (42)

[76] Lippert, R. C. (1980), “Teaching problem solving in mathematics and science with expert systems”,

Journal of Artificial Intelligence in Education 1, pp. 27-40. (2)

[77] Martin, Peter (1998), “Java, the good the bad and the ugly”, ACM SIGPLAN Notices 33/4, pp. 34-9. (9)

[78] Marton, F. and Säljö, R. (1976), “On qualitative differences in learning”, British Journal of Educational

Psychology 46, pp. 4-11. (98)

[79] Mayer, R. E. (1989), “The psychology of how novices learn computer programming”, in Soloway and

Spohrer [126], pp. 129-59. (5, 96)

[80] Mayer, R. E., J. L. Dyck, and W. Vilberg (1986), “Learning to program and learning to think: what’s the

connection?”, Communications of the ACM 29/7, pp. 605-10. (3)

[81] Mayo, E. (1933), The Human Problems of an Industrial Civilization, Macmillan. (39)

[82] McConnell, Jeffrey J. (1996), “Active learning and its use in Computer Science”, ACM SIGCSE Bulletin

28/SI, pp. 52-4. (5)

[83] McCracken, Michael, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David

Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz (2001), “A multi-national, multi-

institutional study of assessment of programming skills of first-year CS students”, ACM SIGCSE Bulletin

33/4, pp. 125-80. (41, 98)

[84] Mendelsohn, P., T. R. G. Green, and P. Brna (1990), “Programming languages in education: the search

for an easy start”, in Hoc et al. [57], pp. 175-99. (96)

[85] Moser, Robert (1997), “A fantasy adventure game as a learning environment: Why learning to program is

so difficult and what can be done about it”, ACM SIGCSE Bulletin 29/3, pp. 114-6. (6, 41)

[86] Motil, John and Epstein, David, “JJ: a language designed for beginners (less is more)”, available from

www.publicstaticvoidmain.com. (23)

[87] Myers, B. A., R. Chandhok, and A. Sareen (1988), “Automatic data visualisation for novice Pascal

programmers”, in Proceedings of IEEE Workshop on Visual Languages (Pittsburgh), pp. 192-8. (117)

[88] Naps, Thomas L., Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris Hundhausen,

Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Ángel Velázquez-Iturbide (2003),

“Exploring the role of visualisation and engagement in Computer Science education”, ACM SIGCSE

Bulletin 35/2, pp. 131-52. (5)

[89] Neal, L. R. (1989), “A system for example-based learning”, in Proceedings of CHI Conference on Human

Factors in Computer Systems (Boston), pp. 63-8. (118)

106

[90] Newton, D. P., Newton, L. D. and Oberski, I. (1998), “Learning and conceptions of understanding in

History and Science: lecturers and new graduates compared”, Studies in Higher Education 23, pp. 43-58.

(98)

[91] Nulty, Duncan D. and Barrett, Mary A. (1996), “Transitions in students’ learning styles”, Studies in

Higher Education 21, pp. 333-45. (6)

[92] Olsen, K. A. (1988), “The DSP system: a visual system to support teaching of programming”, in

Proceedings of IEEE Workshop on Visual Languages (Pittsburgh), pp. 199-206. (117)

[93] Olson, G. M., S. Sheppard, and E. Soloway (eds), Empirical Studies of Programmers: Second Workshop,

Norwood, New Jersey: Ablex. (contains [43], [46], [72])

[94] Palumbo, D. B. (1990), “Programming language/problem-solving research: a review of relevant issues”,

Review of Educational Research 60, pp. 65-89. (3)

[95] Pane, John F. and Myers, Brad A., (1996) “Usability issues in the design of novice programming

systems”, Technical Report CMU-CS-96-132, Carnegie Mellon University. (5, 43, 98)

[96] Pane, John F., Brad A. Myers, and Leah B. Miller (2002), “Using HCI techniques to design a more

usable programming system”, Proceedings of the IEEE 2002 Symposia on Human Centric Computing

Languages and Environments (Arlington, Virginia), pp. 198-206. (41, 118)

[97] Papert, Seymour (1993), Mindstorms, second edition, Basic Books (first edition published in 1980).

(3, 18, 28)

[98] Parsons, H. M. (1974), “What happened at Hawthorne?”, Science 183, pp. 922-32. (39)

[99] Pattis, Richard E. (1981), Karel the Robot: A Gentle Introduction to the Art of Programming, Wiley.

(4, 18, 23)

[100] Pea, R. D. (1987), “LOGO programming and problem solving”, in Eileen Scanlon and Tim O’Shea

(eds.), Educational Computing, Wiley, pp. 155-60. (3)

[101] Pemberton, Steven and Daniels, Martin (1982), Pascal Implementation: The P4 Compiler and

Interpreter, Ellis Horwood. (12)

[102] Perkins, D. N., C. Hancock, R. Hobbs, F. Martin, and R. Simmons (1989), “Conditions of learning in

novice programmers”, in Soloway and Spohrer [126], pp. 261-79. (41)

[103] Piaget, Jean, The Origin of Intelligence in the Child (1936), published in English translation by

Routledge & Kegan Paul, 1953. (3)

[104] Piaget, Jean, The Child’s Construction of Reality (1937), published in English translation by Routledge

& Kegan Paul, 1955. (3)

[105] Poulton, John (2003), “Managing diversity in introductory programming classes: Using Logo as a

diagnostic tool”, 3rd LTSN-ICS one day conference on the Teaching of Programming. (43)

[106] Proulx, Viera K. (1997), “Recursion and grammars for CS2”, ACM SIGCSE Bulletin 29/3, pp. 74-6.

(119)

[107] Putnam, R. T., D. Sleeman, J. A. Baxter, and L. K. Kuspa (1989), “A summary of misconceptions of

high school Basic programmers”, in Soloway and Spohrer [126], pp. 301-14. (41)

107

[108] Resnick, Mitchel (1994), Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

Microworlds, MIT Press. (119)

[109] Roberts, Eric and Picard, Antoine (1998), “Designing a Java graphics library for CS1”, ACM SIGCSE

Bulletin 30/3, pp. 213-18. (9)

[110] Robillard, P. N. (1986), “Schematic pseudocode for program constructs and its computer automation by

SCHEMACODE”, Communications of the ACM 29/11, pp. 1072-89. (117)

[111] Robins, Anthony, Janet Rountree, and Nathan Rountree (2003), “Learning and teaching programming: a

review and discussion”, Computer Science Education 13, pp. 137-72. (41, 42, 43, 88, 96)

[112] Rogalski, J. and Samurçay, R. (1990), “Acquisition of programming knowledge and skills”, in Hoc et

al. [57], pp. 157-74. (27, 41)

[113] Rountree, N., Rountree, J., and Robins, A. (2002), “Identifying the danger zones: predictors of success

and failure in a CS1 course”, Technical Report OUCS-2001-07 (Otago University, New Zealand),

available from www.cs.otago.ac.nz/trseries. (42)

[114] Samurçay, R. (1989), “The concept of a variable in programming: its meaning and use in problem

solving by novice programmers”, in Soloway and Spohrer [126], pp. 161-78. (41)

[115] Shackelford, R. and Badre, A. (1993), “Why can’t smart students solve simple programming

problems?”, International Journal of Man-Machine Studies 38, pp. 985-97. (41)

[116] Schaub, Stephen (2000), “Teaching Java with graphics in CS1”, SIGCSE Bulletin 32/2, pp. 71-3. (9)

[117] Shafto, Sylvia A. S. (1986), “Programming for learning in mathematics and science”, ACM SIGCSE

Bulletin 18/1, pp. 296-302. (2)

[118] Sime, M.E., T. R. G. Green, and D. J. Guest (1977), “Scope marking in computer conditionals: a

psychological evaluation”, International Journal of Man-Machine Studies 9, pp. 107-18. (8)

[119] Sims-Knight, Judith E. and Upchurch, Richard L. (1993), “Teaching software design: a new approach

to high school computer science”, American Educational Research Association (Atlanta, Georgia). (41)

[120] Slack, James (2000), Introduction to Programming and Problem Solving in Java, Brooks/Cole. (9)

[121] Sleeman, D., R. T. Putnam, J. Baxter, and L. Kuspa (1988), “An introductory Pascal class: a case study

of students’ errors”, in R. E. Mayer (ed), Teaching and learning computer programming: multiple

research perspectives, Hillsdale, New Jersey: Lawrence Erlbaum Associates, pp. 237-57. (27, 41)

[122] Sloman, Aaron (1984), “Beginners need powerful systems”, in M. Yazdani (ed.), New Horizons in

Educational Computing, Ellis Horwood, pp. 220-35. (118)

[123] Smyth, Graham (2001), “Survey on programming language preferences”, ACSEnt (Association of

Computer Studies Educators) 2, pp. 1-3. (7)

[124] Soloway, E. (1993), “Should we teach students to program?”, Communications of the ACM 36/10, pp.

21-4. (3)

[125] Soloway, E., J. Bonar and K. Ehrlich (1989), “Cognitive strategies and looping constructs”, in Soloway

and Spohrer [126], pp. 191-207. (27, 118)

108

[126] Soloway, E. and Spohrer, J. C., eds. (1989), Studying the novice programmer, Hillsdale, New Jersey:

Lawrence Erlbaum Associates. (contains [13], [41], [42], [56], [66], [68], [70], [75], [79], [102], [107],

 [114], [125], [127], [128])

[127] Spohrer, J. C. and Soloway, E. (1989), “Novice mistakes: are the folk wisdoms correct?”, in Soloway

and Spohrer [126], pp. 401-16. (43)

[128] Spohrer, J. C., E. Soloway, and E. Pope (1989), “A goal/plan analysis of buggy Pascal programs”, in

Soloway and Spohrer [126], pp. 355-99. (41)

[129] Stein, Lynn Andrea (1998), “What we swept under the carpet: radically rethinking CS1”, Computer

Science Education 8, pp. 118-29. (119)

[130] Trott, Peter (1997), “Programming languages: past, present, and future”, ACM SIGPLAN Notices 32/1,

pp. 14-57. (7)

[131] Tucker, Allen B., Keith Barker, Andrew P. Bernat, Robert D. Cupper, Charles F. Kelemen, and Ruth

Ungar (1998), “Developing the breadth-first curriculum: results of a three-year experiment”, Computer

Science Education 8, pp. 27-55. (97)

[132] Urban-Lurain, Mark and Weinshank, Donald J. (2000), “Is there a role for programming in non-major

Computer Science courses?”, Frontiers in Education Conference (Kansas City). (1, 3)

[133] Urban-Lurain, Mark and Weinshank, Donald J. (2001), “Do non-computer science students need to

program?”, Journal of Engineering Education 90, pp. 535-44. (1, 3)

[134] Vygotsky, L. S. (1934), Thought and Language, published in English translation by MIT Press, 1962.

(4)

[135] Warford, J. Stanley (1999), “BlackBox: a new object-oriented framework for CS1/CS2”, ACM SIGCSE

Bulletin 31/1, pp. 271-5. (7)

[136] Wichmann, B. A. (1970), “PL516, An Algol-like assembly language for the DDP-516”, UK National

Physical Laboratory Report CCU9, at www.series16.adrianwise.co.uk/software/expl516/pl516/pl516.pdf.

(12)

[137] Wilhelm, Reinhard and Maurer, Dieter (1995), Compiler Design, Addison-Wesley. (76, 77)

[138] Winslow, L. E. (1996), “Programming pedagogy – A psychological overview”, ACM SIGCSE Bulletin

28/3, pp. 17-22. (41, 43)

[139] Wolfram, Stephen (2002), A New Type of Science, Wolfram Media. (2)

[140] Zelkovitz, M. V., B. Kowalchack, D. Itkin, and L. Herman (1989), “A SUPPORT tool for teaching

computer programming”, in R. Fairley and P. Freeman (eds), Issues in Software Engineering Education,

Springer-Verlag, pp. 139-67. (117)

109

Appendix A – Lecture Plans and
Example Coursework

The following sections spell out the plan for each of the four compulsory lectures in the

“Programming Concepts” component, designed to cover enough programming concepts

and syntax to enable students to meet the Delphi system for the first time in Lecture 5.

The lecture plans are in note form addressed to the lecturer, mostly copied verbatim

from those produced for the session 2002-03, and are followed by an example

coursework.

Plan for First Lecture on Turtle

(a) In every lecture apart from the last, emphasise that they shouldn’t yet be worrying about the coursework –

their concern should be simply to master what’s been covered in the lecture concerned, and to have a go at

the exercises that take them further. Also, they shouldn’t need to make lots of notes because all the details

are in the Help file – however do emphasise when you make a general “engineering” point that they should

be noting it down (e.g. advice for debugging, tips for systematic working etc. that aren’t in the Help).

(b) Start with the module handout, which provides syllabus and administrative details (but will need

modification each semester to reflect lecture times etc.). When commenting on the structure, emphasise that

the Pascal language taught in the core is the same language that is required for Delphi, so it’s not just a toy.

(c) The first lecture’s objective is to introduce the Turtle system to a level where students can explore it for

themselves, and have a go at the first 4 exercises. Don’t tell them that they’re expected to complete the first

4 exercises before the next lecture; rather, say this sort of thing: “You’ll benefit far more from the next

lecture if you’ve at least had a go at exercises 1 to 4. But don’t worry if you get stuck, and don’t spend ages

trying to solve problems if you encounter them – this is likely to do more harm than good. Next week I’ll be

going over what you need to do for these exercises, but what I say will mean more to you if you’ve at least

made an initial try at them, even if you get virtually nowhere with them.” Also advise them that the exercises

provide a valuable fail-safe in case they mess up the coursework – they will be invited to submit their

exercises along with the coursework, and in this case the exercises might enable them to pass even if their

coursework fails (however this will not compensate for failure to make a serious attempt at the coursework).

(d) Show them how to access and start up the system, and emphasise that it can be downloaded for home use.

(e) Show them the Help system, especially the exercises section. Read some of this through, and show them how

it advises to start with Illustrative program 1 (pointing out that there are other illustrative programs too).

Using this program as an illustration, informally cover all the points in the section on “The Program” which

is linked from the exercises Help, and afterwards draw their attention to the fact that everything you’ve said is

there in the Help section, so they can read it through for themselves at leisure. Particular points to note when

110

running the program include the various areas of the screen (especially the program window, Canvas, “RUN”

button, status bar); examples of program syntax (semicolons etc. – tell them not to worry too much about the

details of this yet, just to note); and of course how the turtle’s activity is determined by the commands. When

showing them the Help section on “The Program”, draw attention to the links it makes to the reference

sections (give them a quick glimpse of these), and mention again the illustrative programs and exercises.

(f) Work through Exercises 1 and 2 in the lecture, illustrating as you do so how you are making use of the Help

system to find details on new commands etc. Don’t bother to do the face particularly carefully – but it’s a

good idea to show them how to do the mouth, illustrating how the order of commands can be important (e.g.

so a white masking blot doesn’t obliterate a nose you’ve already drawn).

(g) Exercises 1 and 2 give the opportunity to cover some of the menu features (especially in the File and Edit

menus) – take advantage of this by drawing attention to them, for example by using the Clipboard commands

to take stuff from the Help file.

(h) End by inviting them to do Exercises 1 and 2 for themselves before the next lecture, and to have a go at

Exercises 3 and 4. Draw their attention to the illustrative programs on FOR loops, and take the opportunity

to show them the Layout menu (because the second illustrative program requires the larger Canvas). Advise

them to use the smaller Canvas in general, because then, if they find that their program moves beyond it, they

can try running it instead on the larger Canvas (the other virtue of the large Canvas is that it’s centred around

the origin, and this can be nice if they’re doing clever symmetrical patterns).

Plan for Second Lecture on Turtle

(a) Start by making sure that everyone has the module handout, and repeating the most important administrative

and “don’t worry” stuff.

(b) Again run quickly through the material covered in Lecture 1, adjusting your pace to take account of how

many people said they didn’t have the handout (i.e. had missed Lecture 1). If very few missed, then this can

be significantly quicker than if lots did. But the repetition will be useful to build up confidence for everyone,

so it’s not wasted time.

(c) Work through Exercises 1 and 2 quite briskly.

(d) Work through Exercise 3 more slowly, showing them how to do the faces with a FOR loop (but probably

leave the repeat loop for those who are keen to try for themselves). Make reference to the two relevant

illustrative programs and point out how they work.

(e) Introduce variables as labelled boxes, and point out that although all the variables we’ll be dealing with in

Turtle are integers, declaration of variable types is essential once they get on to Delphi. Even in Turtle,

booleans are available for keenies if they want to explore that for themselves.

(f) Draw attention to the importance of indenting, and its relation to program syntax. Emphasise use of the auto-

format, and how this can reveal problems (e.g. if they put a semicolon immediately after “do”).

111

(g) Advice when working with loops: (i) Start with the loop working once only (e.g. “for count := 1 to 1 do”);

(ii) Draw a black blot at the end of the loop, so you can see clearly where the turtle’s ending up; (iii) When

that’s OK, move on to the loop working twice only (“for count:=1 to 2 do”); (iv) Only when that’s OK, move

on to more. It helps to motivate this advice if you fix it that the first time you run Exercise 3, you get five

faces in different orientations and on top of each other! Then you can illustrate how to fix the problem

systematically in this way.

(h) Don’t spend long on the nested loops, since it’s important not to confuse. Show it briefly, and make

reference to the relevant illustrative program, drawing attention again to the value of indentation.

(g) If there’s time, briefly introduce the notion of a procedure, putting all the face commands into a procedure

and showing how this makes the loop particularly easy to understand – point out that this is in Exercise 6.

(h) Finally, ask them to complete Exercises 1 to 4 before the next lecture, and invite them to try Exercises 5 to 8,

but again emphasise that they shouldn’t worry if they get stuck.

Plan for Third Lecture on Turtle

(a) Remind students about the multiple faces program, and introduce the notion of a procedure using this (as

covered in Exercise 6), pointing out how it makes the loop(s) easier to understand (especially when there are

nested loops). Again show the FOR loop illustrative programs, and remind them to look at these.

(b) Work through Exercise 5 systematically, drawing attention to all the points mentioned in the Help file in

relation to it.

(c) Move on, as in the Help for Exercise 5, to the material in the section on “Procedures and Parameters” (up to

and including “Introducing Simple Value Parameters”), again drawing attention to the fact that everything

you are covering can be read there too, and also to the two relevant illustrative programs – the second one of

these introduces DOWNTO, which is worth mentioning for the sake of completeness (but don’t waste time

doing any more on it).

(d) Now move on to recursion, again following the material in the “Procedures and Parameters” section (and

again pointing this out) – take the opportunity to emphasise at appropriate points how a recursive procedure

has to have its own local copy of the relevant variable(s), as explained in the section on “Scope”.

(e) Start by introducing the Cat in the Hat (from the eponymous children’s book by Dr Seuss), a mischievous cat

who tries to be helpful but invariably causes trouble. A boy and a girl, left home by their mother with the job

of clearing snow from the path, are visited by the Cat in the Hat who offers to help. However so far from

helping, he simply manages to turn most of the snow red, so now the children have the extra job of cleaning

the snow! It’s at this point that the Cat in the Hat introduces his helpers, Little Cats A to Z, each of which

lives inside the hat of the previous cat. The Cat in the Hat Powerpoint show gives four double-page spreads

from the book, covering the unveiling of Little Cats A to G – read these through, in an appropriate rhythm to

bring out the humour.

112

(f) Now copy and run the simple non-recursive triangles program in the “Recursion” sub-section, and explain

that the procedure gives the instructions that a cat needs to follow for drawing a triangle.

(g) What’s special about recursion, though, is that at any point in drawing its own triangle, a cat can “pop”

another cat out of its hat, and instruct it to go and do something and then jump back into the hat, before the

initial cat continues on its way. Illustrate this first by having the triangle procedure include just one recursive

call, then all three (as in the illustrative program).

(h) When working through all this, it helps a lot if you walk out the steps of the various cats, and mime the hat

operations etc.

(i) Show the students “The Recursion Factory” from the Help menu, and invite them to play with it to produce

their own recursive designs. Explain how such designs can be saved to the Clipboard or to a file using the

File menu.

(j) Finally, ask the students to complete Exercises 5 to 8 before the next lecture, and invite them to have a go at

Exercises 9 to 12.

Plan for Fourth Lecture on Turtle

(a) Start by reminding students briefly about what was covered last time, making reference to the relevant

illustrative programs and (especially) Help sections.

(b) Run the “REPEAT loop” and “Combining structures” illustrative programs, to show the kind of thing that’s

going to be covered in this lecture.

(c) Work through Exercises 9 to 11, following the order of presentation given in the Help file (which includes

reference to the “Programming Essentials” section for the syntax and meaning of “if” statements).

(d) Draw attention to the commands UPDATE and NOUPDATE, which are mentioned in connection with

Exercise 8 but are particularly important when simulating smooth motion.

(e) Having shown how to produce smooth motion of a single object, mention and demonstrate (but do not

discuss) the illustrative programs on “Reference (VAR) parameters” and “Multiple bouncing balls”, which

ambitious students might wish to follow up themselves (with the subsection on “Value and Reference

Parameters” from the Help section on “Procedures and Parameters”).

(f) Briefly draw attention to the material covered in the remaining illustrative programs, and how this can be

followed up using the Help file:

 1. Cycling colours: RANDCOL as a random number generator, and use of MOD to cycle (note that MOD

is also used in the “Combining structures” illustrative program to produce the steps, so it’s worth

pointing out how useful it can be for any oscillating pattern).

 2. Using booleans: more randomness, and boolean variables.

113

 3. Using POLYGON with FORGET: mention POLYGON and POLYLINE (both of which are relatively

likely to be useful for all students), and explain how FORGET can be used to extend their power.

 4. 3D effects with colour: just use this as an opportunity to draw attention to Turtle’s ability to handle

colours in more powerful ways than have been shown before, making reference to the Help system for

anyone who wants to follow this up.

(g) Finish off by discussing the coursework and associated administrative arrangements, and by reminding

students about the final lecture on the Turtle compiler (to which all are invited, but for which attendance is

not compulsory – advertise it as of particular interest for those who want to know what goes on “under the

bonnet” of a real computer).

Illustrative “Programming Concepts” Coursework

This illustrates the typical content of a recent Turtle Graphics Programming coursework Web page, omitting

cross-references, links, and general advice on submission method, deadlines, plagiarism, help sessions,

newsgroups, example submissions, and other standard learning resources etc.

Outline

The coursework for this component falls into two parts:

Part I

Choose two from the following six features of Turtle Graphics Pascal:

 (a) POLYLINE or POLYGON

 (b) FOR – DO loops

 (c) REPEAT – UNTIL loops

 (d) PROCEDUREs with parameters (non-recursive)

 (e) Recursion

 (f) Colour codes and colour handling

Then illustrate each of your two chosen features with a short example program, preferably of less than 20 lines

each, and aiming to satisfy the criteria given below (e.g. correctly named, clarity, interest, relevance). Note that

these short example programs should be quite distinct from your main Part II program - you will not be given credit

for merely extracting parts of that program and submitting them for Part I.

114

Part II

Construct a reasonably sized program (at least 50-100 lines altogether) which creates an interesting design of your

choice, using every one of the types of command and structure mentioned in the Exercises page of the Turtle

Graphics Help file (details of exactly what this requirement amounts to are given below, together with the criteria

by which your program as a whole will be judged). Your design might be abstract, or it could be a picture. And it

might incorporate movement, but it need not - however it should have a reasonable degree of complexity, produced

in a clearly comprehensible way by making use of loops and procedural structures.

The program that you produce should contain at least two procedures, each of which should have a clear

purpose. The specification of each procedure's purpose, and a brief description of the program's intended behaviour

and of any issues you have encountered in its development, should be written in a text file and submitted with your

programs.

You are also invited (but not expected) to submit your work on the built-in Turtle Graphics exercises, which

may act as a "safety net" to help you pass if for some reason you have a disaster with your main program (e.g. if

having done a lot of work on that program, you can't get it to run - you will NOT pass if you haven't at least made

a substantial effort).

Detailed Requirements and Assessment Criteria

Part I

Having chosen your two features of Turtle Graphics Pascal (from the six options of POLYLINE or POLYGON,

FOR – DO loops, REPEAT – UNTIL loops, PROCEDUREs with parameters, Recursion, and Colour codes and

colour handling), you should try to produce a short illustrative program for each of them, satisfying the following

criteria:

• Programs named appropriately (see details of items to be submitted below).

• At most 20 lines in each illustrative program.

• Program clearly written and formatted (e.g. using the auto-format facility!), and easy to understand.

• Producing a visually interesting result.

• A relevant visual result, in that someone looking at it together with the program could see fairly clearly what

use is being made of the feature being illustrated, and/or how that feature assists in creating the visual effect.

Part II

The main component of the coursework is to construct a relatively large program (at least 50-100 lines altogether)

which creates an interesting design of your choice, using every one of the types of command and structure

mentioned in the Exercises page of the Turtle Graphics Help file - this means that it should contain at least one

instance from each of the following groups (and you will be given credit for showing yourself able to use a variety

of commands, so it's a good idea to aim to use all of these commands and structures at least once, but don't feel you

have to do this if doing so wouldn't fit smoothly into your program):

115

 relative movement: FORWARD, BACK, MOVEXY, DRAWXY

 direction: LEFT, RIGHT

 absolute movement: HOME, SETX, SETY, SETXY

 shapes: CIRCLE, BLOT, POLYLINE, POLYGON

 pen settings: COLOUR, RANDCOL, THICKNESS

 drawing control: PENUP, PENDOWN, NOUPDATE, UPDATE, PAUSE

 procedures: PROCEDURE (with parameters)

 for loops: FOR – TO, FOR – DOWNTO

 repeat loops: REPEAT – UNTIL

 conditionals: IF – THEN – ELSE

 variable assignment: :=

You may also want to consider using the following:

 BLANK, CANVAS: to control the appearance of the canvas;

 REMEMBER, FORGET: to control the behaviour of POLYLINE and/or POLYGON;

 Arithmetical, relational and boolean operators.

Your program is also required to contain at least two procedures, preferably both with parameters, each of which

should have a clearly identifiable purpose. Ideally, these two procedures should each do a single "job" which is

fairly easy to describe and understand but which is at least moderately complex (so each procedure should contain

at least 5-10 commands). A procedure of this kind is particularly valuable, because not only does it make the

program easier to understand by dividing it up into easily understandable tasks, but also, it can save you work in

the long run because the very same procedure, once written and checked, can be copied into any other Turtle

program where you need to do the same job (and if you got it right first time, won't need to be re-written or re-

checked).

The specification of each procedure's purpose, and a brief description of the program's intended behaviour

and of any issues you have encountered in its development, should be written in a text file and submitted with your

programs. The point of this requirement is first, to show that you have thought about the design of your program

and what it is intended to do; secondly, to show that you understand what your procedures do and how they

contribute to the program's overall structure; and thirdly, to give you an opportunity to mention any aspects of your

work that you are particularly pleased with, or any difficulties that you have spent time on and that you would like

the markers to take into account.

Apart from the various points already mentioned above, the following criteria will be taken into account in

marking your work:

• Program MUST run correctly, without syntax errors.

• Program MUST be titled with your own username – so if your username is "DEP1ABC", then the first line of

your program should read: “PROGRAM dep1abc;”, and it should be saved under the filename

DEP1ABC.TGP.

• Text file MUST be saved under the filename PROGDESC.TXT.

116

• Program clearly written and formatted (e.g. using the auto-format facility), and relatively easy to understand

(taking into account the complexity of what it does).

• Program should be annotated with comments to help indicate what is going on in different parts of it.

• Producing a visually interesting (and maybe even entertaining) result.

• Appropriate use of commands and structures to produce this result.

Items to be Submitted

• TWO illustrative programs for Part I, satisfying the criteria specified above and with names each reflecting

their purpose, so that the program title (in the first line of the program) is either EGPOLYLINE,

EGPOLYGON, EGFOR, EGREPEAT, EGPROCEDURE, EGRECURSION, or EGCOLOUR as appropriate,

while the filename of the program file is either EGPOLYLINE.TGP, EGPOLYGON.TGP, EGFOR.TGP,

EGREPEAT.TGP, EGPROCEDURE.TGP, EGRECURSION.TGP, or EGCOLOUR.TGP.

• ONE main program for Part II, satisfying the criteria above and with a program and filename corresponding to

your own username (as explained in detail above).

• ONE plain text file called PROGDESC.TXT describing your main program, as explained in detail above.

• If you wish, the programs that you have done for the self-teach exercises in the Turtle Graphics Help file. Note

(a) that to be taken into account, these exercise programs must be named correctly (e.g. "TGPX10.TGP"); and

(b) that they will not usually count towards your mark unless they are needed to provide a "safety net" (e.g.

where your main submitted program goes seriously wrong in some way, in which case evidence of having done

the exercises competently could enable you to pass nevertheless).

Advice on Approaching Your Work

You should plan what you are going to do in Part II of the coursework before you create your program. Get plenty

of scrap paper to hand and think about what kind of design or effect you want to produce. Think about what you

want your procedures to do, what global and local variables you will need and so on. As you begin to write your

code, annotate it with comments so that you can keep track of where you are up to. You will find the coursework

much easier if you have a clear idea of what you are trying to do in your program. This will also make it easier for

you to write up your text file. You should also bear in mind that when your coursework is marked, the sections of

your code will be examined in the context of how they contribute to the overall workings of the program. If you

just throw in a random jumble of drawing instructions, you will end up with a program that looks a mess and is

unlikely to produce a visually interesting result.

Always allow plenty of time for debugging and tidying up your program. This often takes much longer than

working out the general ideas behind the program!

117

Appendix B – Possible Future
Developments

The development and refinement of a system such as Turtle is potentially endless,

because there are so many useful features that could be added to the editor, the

environment, the Visual Compiler, and the help resources; indeed it would be relatively

straightforward to fill an entire thesis with a discussion of the possibilities. Since space

does not permit any such extended discussion, I shall confine myself here to merely

listing a few of these, together with references to some relevant literature that suggests

possible alternative approaches. Deek and McHugh [35] provide a particularly useful

survey of many varied systems for supporting the learning of programming, making

reference to most of those mentioned below.

The Editor

Currently the system’s editor is relatively basic, and it could usefully be enhanced with

such features as search and replace, syntax highlighting, and multiple file processing, to

mention only the most obvious possibilities. More radical suggestions might include a

syntax-tree-based code generator such as that incorporated within the SUPPORT system

(Zelkowitz et al. [140]) which also uses Pascal, or automated translation from

pseudocode as provided by SCHEMACODE (Robillard [110]), which supports Pascal

as well as other syntaxes. However such options would require integration with the

standard text editor if the system were to continue to provide familiarisation with

conventional code editing, as required for it to serve as an appropriate bridge to Delphi

or Kylix.65

65 For the same reason, I do not consider here the use of graphics-based programming tools along

the lines of Pict (Glinert E. and Tanimoto [45]), Amethyst (Myers et al. [87]), DSP (Olsen [92]), ASA

(Guimaraes et al. [48]), or BACCII (Calloni and Bagert [23]).

118

The Environment

Another worthwhile addition might be a library of templates and examples, as provided

by the Example-Based Programming System (EBPS) of Neal [89]. Sloman [122]

suggests a large number of other features worthy of consideration within a programming

environment for novices, including interactive stepping through a program, incremental

compilation and various “intelligent” aids. Similar themes are also explored in Atwood

et al. [8], while Pane et al. [96], though primarily focused on the design of a visual

environment for children, draw attention to a number of usability criteria that would also

be worth bearing in mind.

The Language

For the teaching of loops, it is useful to have a “break” command like that of Delphi,

likewise “exit” to quit from a procedure (enabling a “middle exit” strategy which

Soloway et al. [125] identify as being helpful for novices). Mutual recursion would be

less restricted if the system had a “forward” or “deferred” directive (cf. note 44). Other

additions that might be worth considering, if only as selectable options (to avoid

potential overload for novices), would be functions, “while” and “case”.

Interactivity is currently not possible while a program is running except to halt it,

and output is restricted to geometrical shapes. Other possibilities include fixed or

program-definable input boxes and buttons (together with events), and display of

number strings. Arbitrary text strings would require more radical revisions to the Turtle

Machine, and introduction of a string type would imply extension of the range of basic

concepts conveyable by the system, since type checking would then be essential. Even if

integers and booleans remain the only primitive types, such checking might be a useful

addition. Arrays would also be valuable, especially if visual output of numbers is

facilitated, since this would enable the system to be used to illustrate ideas of sorting and

complexity. If the Visual Compiler is extended accordingly (e.g. with counting of

primitive operations), then some of the ideas from the systems reviewed by Chalk [27]

might be worth considering.

119

More fundamentally, it would be desirable to incorporate additional language

syntaxes, notably that of Java, which could be combined with moving to an object-

oriented approach. The notion of a turtle as an object is very natural, and would open

the door to multiple turtles which can interact (as explored by Resnick [108] with his

development of StarLogo). Modern systems are increasingly composed of interacting

objects with independent threads of control, and object-orientation would enable

programming to be taught in the spirit of this new paradigm, as strongly advocated by

Stein [129] under the motto “computation as interaction”. A less fundamental but more

easily manageable change would be to allow Java syntax but remain procedural, taking

advantage of the restriction to introduce intertranslatability between Pascal and Java

syntax (which might in itself have a significant educational value for novices).

The Compiler

Leaving aside changes to the compiler implied by the suggestions above, it might be

useful to extend the range of error messages and warnings, also adding corrective hints

of the type described by Lewis and Mulley [73], for example to warn students of

apparent identifier/keyword conflicts, duplicate identifiers in nested scopes, variables not

used or not initialised etc.

The Illustrative Programs and Tutorial Material

If new features are added such as those listed under “The Language” above, then it will

obviously be appropriate to update the illustrative programs (and corresponding tutorial

Help file sections) accordingly. Apart from this, an interesting possibility is to develop

the discussion of recursion into the area of fractal patterns, perhaps linking this with the

theory of Lindenmayer systems (“L-systems”), for the display of which Turtle Graphics

is already known to be a useful vehicle (Bridges [16], Alfonseca and Ortega [5], Proulx

 [106]).

