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Abstract 

The Turtle Graphics Programming System developed for this MSc (“Turtle” for 

short) is designed to enable non-specialist students to learn a range of fundamental 

concepts of programming and Computer Science in a straightforward but fairly 

rigorous manner, within a user-friendly environment that makes the first steps as easy 

as possible while providing scope for advanced experimentation.  Chapter 1 explains 

the overall form of the system – why it is based on Turtle Graphics, why it uses Pascal 

source code, and why it incorporates a virtual machine and a self-contained compiler to 

translate that source code into Turtle Machine “PCode”.  The chapter ends with an 

outline of the remainder of the thesis, and a list of what I take to be the project’s main 

achievements and novel contributions. 

Chapter 2 provides a quick tour around the finished system, including its “Visual 

Compiler” displays that aim to make the Turtle Machine’s inner workings transparent.  

Chapter 3 then explains in detail why its Pascal source language has the commands and 

structures that it does, bearing in mind the system’s primary role as a learning system 

for introductory programming.  Chapter 4 reviews its actual performance in this role, 

drawing on student feedback and assessments to establish its effectiveness. 

Chapters 5 to 7 cover the system’s secondary role, of providing a vehicle for the 

learning of fundamental concepts such as machine code, compilation, dynamic memory 

management, automata, and stacks.  Chapter 5 introduces the specially designed virtual 

Turtle Machine and its basic operation.  Chapter 6 takes this further into procedure 

calls and dynamic memory management.  Then Chapter 7 explains the detailed 

operation of the Turtle compiler, designed in a modular fashion to provide a relatively 

accessible way in to compiling and associated techniques (FSM, PDA, recursive 

descent).  In the absence of specific classroom experience to validate the effectiveness 

of these aspects of the system, Chapters 5 to 7 have all been written in an expository 

style intended to demonstrate, by example, the Turtle Machine’s simplicity of operation 

and its appropriateness as a teaching tool.  Finally Chapter 8 reflects on the system’s 

overall value, suggesting surprisingly strong links between its two main roles, before 

ending with a retrospective summary of the project’s achievements. 
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Chapter 1   Background, Aims, 
and Achievements 

1.1 The Electives “Market” and its Needs 

Beginning students find it notoriously hard to learn basic programming concepts, as 

testified both by the Computing Education literature (see §4.4 below) and by the many 

intense and long-running discussions of the issue in schools of Computing.  But if this is 

a major problem with students who are already committed to specialist Computing 

degrees – and who can therefore be expected to put in serious effort for considerable 

amounts of time if necessary – then it is obviously even more of a difficulty (albeit less 

grave in its implications) when the students concerned are on “elective” modules, with 

no guaranteed formal background, limited time at their disposal, and no need to pass the 

module in order to proceed with their degree programme. 

One possible reaction to this difficulty would be to give up the attempt to teach 

programming to elective students, but such a reaction would be very regrettable: 

• Most non-Computing students will not have encountered programming before 

entering university, and so may be interested in a “taster” course to see if it 

appeals sufficiently to merit a change of degree programme (e.g. to include 

“minor” Computing), or consideration as a possible future career. 

• A basic mastery of programming concepts is genuinely useful even for those who 

have no intention of pursuing a computing career, since the powerful modern 

software systems that they are likely to encounter in the workplace (notably the 

ubiquitous “Office” packages) provide considerable scope for customisation and 

automation using “macros”, which can be made vastly more powerful if the user 

understands, for example, the concept of a loop.  The 1999 report from the 

National Academy of Sciences Being Fluent with Information Technology  [30] 

goes even further, arguing on this sort of basis that programming is now “critical 

to FITness” (section 3.1), though this conclusion is of course controversial (e.g. 

Urban-Lurain and Weinshank  [132]  [133]). 
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• For students of many academic disciplines, there is value in acquiring an 

understanding of algorithmic thinking quite independent of its potential practical 

usefulness to them.  Students of Philosophy, History and Philosophy of Science, 

or Cultural Studies, for example, can thus gain an appreciation of a pervasive 

modern mode of thinking that now profoundly influences our culture in radically 

novel ways (cf. Dijkstra  [39]).  This influence is also significant in a vast range of 

disciplines where algorithmic models are widely used, from social sciences such 

as Economics, Political Theory and Psychology, to “hard” sciences such as 

Biology and even fundamental Physics.1 

• In some disciplines, algorithmic models are sufficiently accessible to provide 

ways of learning about the domain by active development and experimentation 

(Shafto  [117], Harel and Papert  [52], Lippert  [76], cf. Guzdial  [49]).  A simple 

Turtle Graphics example would be to give a Physics student the task of writing a 

program to simulate the flight of cannonballs under gravity 

So there are strong reasons for wishing to make basic programming concepts available 

to non-specialist students.  The main aim of the software described in this thesis was to 

provide a way of doing so which could be engaging and “friendly” enough to interest a 

high proportion of such students, whilst at the same time providing scope for those few 

who wish to dig deeper to learn some more advanced concepts of computer science 

(such as recursion, machine code, compilation, and memory models) in a 

straightforward and approachable, but nevertheless suitably rigorous, context. 

1.2 Why Turtle Graphics? 

For students like those described above – whose other subjects demand the lion’s share 

of their commitment and time, and with little academic motivation for programming 

except in so far as they find the work interesting and enjoyable – it would be hard to find 

a better starting-point than Seymour Papert’s idea of “Turtle Graphics”.  Papert’s own 

                                                

1 Of course the extent to which such models are appropriate is debatable in some of these cases, 

perhaps most strikingly in Stephen Wolfram’s recent attempt to provoke an algorithmic revolution 

within Physics through his book A New Type of Science  [139]. 
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famous and seminal discussion  [97] provides a detailed and powerful case for this 

conclusion on general educational grounds, based in part on Jean Piaget’s insights into 

the theory of learning;  here I shall be much briefer, and will not endorse Papert’s more 

ambitious claims about the value of programming for the general development of 

transferable problem-solving skills (cf. Pea  [100], Mayer et al.  [80], Kurland et al.  [70], 

Palumbo  [94], Soloway  [124], Urban-Lurain and Weinshank  [132],  [133]).2  But I will 

add some additional considerations that bear particularly on the context of teaching 

programming concepts to elective students in a university. 

Piaget’s theory of human intellectual development, as presented in works such as 

The Origin of Intelligence in the Child  [103] and The Child’s Construction of Reality 

 [104], has had a huge impact on modern educational practice, and also carries a number 

of potentially significant implications for the learning of programming in particular.  His 

work has given rise to the educational theory of “constructivism”, whose central theme 

is that knowledge must be constructed by the learner rather than taught by authorities or 

read passively from the world.3  This theme has sometimes been taken to 

epistemological extremes, as in idealist or postmodern rejections of the very possibility 

of objective knowledge,4 but its dominant educational manifestation has been an 

emphasis on student-centred learning.  Boyle  [15] usefully summarises the implications 

under five headings, in the context of a discussion of learning environments for 

computing.  The first three headings are particularly relevant here:5 

                                                

2 But as remarked earlier, programming can have wider educational value quite independently of 

these concerns, where it is used as a vehicle for facilitating learning about other domains. 

3 For a wide range of essays on constructivism and education assembled by the Maryland 

Collaborative for Teacher Preparation, see www.towson.edu/csme/mctp/Essays.html. 

4 Ben-Ari  [12] outlines how an educational paradigm can impact on attitudes to ontology and 

epistemology, as well as methodology and pedagogy.  He then goes on to suggest how a more sober 

constructivism can bring positive benefits to computer science education. 

5 The last two are “Experience WITH the knowledge construction process” (i.e. learning how to 

learn), and “Metacognition” (i.e. reflecting on one’s learning to generate more effective learning 

strategies).  Both of these involve higher-level educational goals which do not apply in the early stages. 
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(a) Authentic Learning Tasks:  “… learning tasks should be embedded in problem 

solving tasks that are relevant [to the learner]”. 

(b) Interaction:  “interaction is … the primary source material for the cognitive 

constructions that people build to make sense of the world”.  One particularly 

influential approach, ultimately deriving from Vygotsky  [134], is Cognitive 

Apprenticeship theory, which “emphasises the active role of the teacher in 

supporting the learner.  … The teacher first provides a model of expert performance 

in the task [and] actively coaches the learner in acquiring the target skills and 

knowledge … then gradually removes this support forcing the learner to become 

increasingly independent.”  (Such a removable support is commonly referred to as 

scaffolding within the educational literature.) 

(c) Encourage Voice and Ownership in the Learning Process:  “students should be 

allowed to choose the problems they will work on [and] the teacher should serve as 

a consultant to help students to generate problems which are relevant and 

interesting to them”. 

Turtle Graphics is an excellent exemplar of this paradigm, on all three criteria.6  First, it 

replaces traditional number- or text-based programming exercises with creative 

graphical design, something which is interesting and motivating to a far higher 

proportion of students.  Secondly, it provides a good vehicle for interactive learning, 

precisely because the tasks it involves are ones that can easily be appreciated and 

discussed;  moreover a Turtle Graphics system – with a simplified environment and 

built-in primitives designed to facilitate the creation of graphics – can itself serve as a 

“scaffold” to develop the skills needed for more advanced systems.  Finally, the 

creativity implied by graphical design positively invites students to generate their own 

ideas:  our human visual imagination ensures that there is no difficulty whatever in 

having an entire class all working on their own individual problems. 

                                                

6 Along with Turtle Graphics, perhaps the best-known “microworld” approach to introductory 

programming is that of Karel the Robot (Pattis  [99]), which in particular gives an excellent basis for 

learning about procedural abstraction.  But Turtle Graphics scores better on these three criteria, in part 

because it delivers an obvious graphical product rather than being focused primarily on a task. 
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In addition to these general constructivist considerations, there were a number of 

more specific reasons for favouring Turtle Graphics in the context of this project: 

• Turtle Graphics is simple and intuitive and hence easy to grasp, even for young 

children, because it is based on a familiar type of metaphor (cf. Mayer  [79], 

Brusilovsky et al.  [19], Pane and Myers  [95] section 5.1).  A “turtle” (which 

need not be represented visually) moves around the screen, drawing as it goes, 

and following straightforward English instructions such as “forward”, “left”, 

“circle”, and “colour”.  This metaphor is so straightforward as virtually to 

guarantee that students will have no difficulty in understanding it. 

• No doubt for obvious evolutionary reasons, humans find visual comprehension 

far easier and more natural than (for example) mathematical, as testified by the 

frequent use of visual language to describe our grasp even of abstract ideas.  

With Turtle Graphics one can literally “see” the program working through its 

stages, especially if it is possible to pause the processing at intermediate steps.7 

• If a Turtle Graphics system makes provision for loops, then it is fairly easy to 

learn how to use it to produce attractive patterns far more intricate than would 

be feasible by hand.  Hence such a system can appear “useful” even to students 

who have no interest in computation or information processing as such. 

• Although very straightforward, Turtle Graphics is not intrinsically limited.  Both 

novices and more advanced students can find a challenge within such a system, 

because patterns of arbitrary complexity can be generated with more or less the 

same simple tools as are used by beginners. 

• When a Turtle Graphics program goes wrong, it is relatively easy to see where it 

has gone wrong and in what way, thus greatly easing the pain of debugging. 

• Likewise in Turtle Graphics it is quick and straightforward to test “what if” 

scenarios, changing the program and identifying how the output has changed as a 

result (McConnell  [82] pp. 52-3 stresses the value of such “active learning”). 

                                                

7 The virtues of using graphics to mediate the learning of programming are also stressed, with 

supporting references and a brief survey, by Cooper, Dan et al.  [31],  [32], though Naps et al.  [88] argue 

that such benefits do not necessarily extend to visualisation of more abstract algorithms. 
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• Turtle Graphics gives ample scope for personal creativity, one of the greatest 

satisfactions to be derived from programming, though largely closed off from 

beginners in typical “training” situations (e.g. where they are set a fixed 

information processing task).  Not only is this enjoyable, but there is evidence 

that “Arts” students in particular benefit educationally from the opportunity of 

learning in a creative, “divergent” manner, rather than in the “linear” manner 

which tends to characterise traditional data- or mathematically-oriented teaching 

of programming (Hartley and Greggs  [53], Nulty and Barrett  [91]). 

• Partly because Turtle Graphics lends itself so well to divergent, creative 

development, it is relatively easy to structure a course around it that enables 

learners to work at their own speed (cf. Liffick and Aiken  [74], Moser  [85]) and 

which stresses “discovery” learning (cf. Baldwin  [9]).   

• Assessment of Turtle Graphics programs can take advantage of the marker’s 

intuitive familiarity with visual patterns, and consequent ability for easy 

recognition of the program’s behaviour and results.  One consequence of this is 

that creative graphics coursework not only greatly reduces the frequency of 

plagiarism; it can also make plagiarism relatively simple to detect. 

For all these reasons, I decided that my intended introductory programming module 

should start with Turtle Graphics.  But this still left open the difficult (and in other 

contexts notoriously controversial) choice of programming language and “target” 

development environment. 

1.3 Why Turtle Graphics Pascal? 

Turtle Graphics was developed by Papert in tandem with LOGO, his programming 

language for children.  This is in many ways an excellent and versatile language, 

belonging to the LISP family, but due in part to its childish associations (and the fact 

that in schools it is seldom exploited to anything like its potential), it suffers from low 

esteem and “credibility”.  This lack of credibility has presumably both contributed to, 

and been exacerbated by, the language’s virtual invisibility in the commercial world. 
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Although the choice of language in a programming module designed for elective 

students perhaps need not be so influenced by these sorts of concerns as in a module for 

prospective computing professionals, there is little doubt that an introduction to 

programming based on LOGO – whatever its educational merits – would have difficulty 

attracting sufficient recruits to be viable.  An elective programming module must balance 

a number of factors, some of which tend to pull in opposite directions: 

(a) Ease of learning by students who cannot be presumed to have a strong commitment 

to mastering programming for career or academic progression. 

(b) Quick results – early positive feedback so that right from the start a student can get 

the satisfaction of visible progress (again a need which is greatly amplified by the 

lack of presumed career commitment from these students).  

(c) Minimisation of “debug frustration”, the common experience of beginning students 

struggling with multiple syntax errors or manifestly incorrect output. 

(d) Suitability for appropriate learning of both fundamental concepts and software 

disciplines (to pave the way for any students who ultimately decide to continue with 

Computing through, say, a major/minor programme). 

(e) Perceived “usefulness”, so that even those students who do no more programming 

beyond this introductory module will feel that they have learned something of 

practical value to them. 

Obviously it is (very) arguable which programming language and environment best 

satisfy these sorts of criteria (see for example Jarc  [60], Brilliant and Wiseman  [17], 

Cantù  [25], Trott  [130], Hadjerroult  [50], Warford  [135], Callear  [22], Smyth  [123], 

Burton and Bruhn  [21], and Jenkins  [63]), but at the time of developing the module I 

took the view that the optimal combination was to teach Pascal with a view to Borland’s 

Delphi development environment for Windows.8 

                                                

8 There would now be good reason to consider an alternative solution based on Java syntax, given 

that language’s commercial value and general prominence in an Internet-aware culture, its capacity to 

provide immediate perceived “usefulness” through Web applets, and the (free) availability of highly-

regarded environments such as BlueJ which themselves exploit graphics and visualisation to facilitate 

further learning.  See Appendix B for some discussion of possible future developments in this direction. 
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Briefly, the reasons for this decision were as follows.  First, it is widely accepted 

that Pascal’s syntax is significantly easier for beginners to read and understand than that 

of C++ or Java (probably in part because its control structures are more verbose, cf. 

Sime et al.  [118]);  moreover I had nearly a decade’s experience of teaching 

Turbo/Borland Pascal, which gave me a high opinion of the system’s learnability and 

robustness, notably error messages that are relatively unconfusing (criteria a and c).  

Secondly, as regards rigour and appropriateness for software engineering (criterion d), 

Pascal seemed preferable to Visual Basic, which was another obvious contender on 

grounds of initial simplicity and “credibility” (moreover Green et al.  [46] found that 

syntactically, Pascal is easier than Basic for beginners to parse in what they term the 

“parsing-gnisrap” cycle where new “chunks” are inserted into existing code).  Visual 

Basic would also have implied commitment to a specific proprietary platform (notably 

Microsoft Windows and its variants), and although Windows was indeed the obvious 

default platform to use given the target audience of the module (on grounds of 

familiarity, availability, ease, and perceived “usefulness” to them – criteria a and e), it 

was a significant virtue of Delphi that plans were afoot to port it to Unix, soon to result 

in the Kylix system (since 2001). 

Choice of Delphi, however, left the problem of initial learning and the need for 

quick results (criterion b).  Delphi is a complex environment, and I remember myself 

finding the initial sight of it somewhat daunting, despite all my prior programming 

experience.  Even provision of a “Turtle Graphics” unit within Delphi would not help 

much to overcome the problem that attempting to initiate novice students both into the 

language and the environment at the same time might well prove overwhelming.9  So 

the ideal approach seemed to be to separate their initial learning of the Pascal language 

from their learning of the Delphi environment.  Hence the need for a self-standing 

environment that could support an introduction to Pascal with an emphasis on Turtle 

Graphics, but with sufficient sophistication that it could prepare the students for a 

                                                

9 I was confident, however, that using Turtle Graphics as a bridge into the Pascal language itself 

would work smoothly, since I had personal experience of using a simple custom-written “unit” in this 

way when teaching Turbo Pascal to elective students in 1994/95. 
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relatively easy initiation into Delphi, and also preferably enable the more proficient 

students to “stretch themselves” even prior to this initiation. 

1.4 Why an Integrated Visual Compiler? 

The idea of using Turtle Graphics to introduce algorithmic thinking to novice 

programmers has proved extremely popular over recent years, and there are any number 

of such systems to be found on the Web and referenced in the Computer Science 

teaching literature.  Dedicated environments, however, tend to be almost exclusively 

based around the language LOGO,10 because Turtle Graphics systems focused on the 

learning of other languages (such as C++, Delphi, Java, or Visual Basic) are usually 

provided as mere “units” or “classes” within a standard programming environment.11  

The closest approximation I have found to the sort of system envisaged in this project, 

which became available recently (albeit only in a beta version that lacks a user manual 

and most of the planned “lessons”), is Otherwise Software’s Jurtle for Java.12  Though a 

commercial system, this is evidently targeted for the educational market, being user-

friendly, reasonably priced, and also provided in an unlicenced version that allows 

temporary trial of the product. 

                                                

10 See for example the LOGO Foundation website at http://el.media.mit.edu/logo-

foundation/logo/. 

11 A Web search can very quickly find, for example the GrWin Graphics Library for Fortran and 

C/C++;  the turtle classes in Donovan  [40] for C++; and the many Turtle Graphics Windows 

components on various Delphi and Visual Basic freeware and shareware sites.  Turtle Graphics is now 

enjoying something of a resurgence in the teaching of introductory Java, as for example in Martin  [77], 

Caspersen and Christensen  [26], Schaub  [116], Slack  [120], and Ariga and Tsuiki  [7].  This emphasis 

on early graphics is presumably fostered by Java’s association with Web applets, but unfortunately its 

standard stateless “redraw every time” mechanism imposes limitations on a turtle-style system.  Roberts 

and Picard  [109] and Bruce et al.  [18] have therefore developed alternative approaches which, though 

somewhat inspired by Turtle Graphics, are based instead around the idea of persisting graphical objects 

with their own internal state. 

12 See www.otherwise.com/Jurtle.html.  Another system which may be of a similar type (since it is 

described as “a graphics environment” but requires an external compiler) is Sparkling Light Software’s 
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Jurtle requires prior installation of the standard Sun JDK (Java Development Kit), 

and integrates nicely with it:  once the location of the Java compiler has been set within 

Jurtle, it hands over control seamlessly when necessary, and displays the appropriate 

compiler messages within the programming environment.  The problem is that these 

messages are not designed to be suitable for a novice, so as soon as things start to go 

wrong, such a user is likely to feel overwhelmed and intimidated.  Here, as a very mild 

example, is the message given when the word “forward” is misspelt within “BoxTurtle”, 

one of the simplest illustrative programs provided: 

 

C:\Program Files\Jurtle\Examples\BoxTurtle.java:19: cannot resolve symbol 

symbol  : method forwad (int) 

location: class BoxTurtle 

        forwad( size.height - 40 ); 

        ^ 

1 error 

Far worse, however, is what happens if the user happens to omit the “{” which follows 

the line “public void runTurtle()” within this same program.  Not only is there no correct 

diagnosis of the error (the first error message given refers to a missing semicolon rather 

than a missing brace), but also, the messages run to well over 100 lines, with no fewer 

than 38 errors identified in what is a very short program! 

This particular type of problem would not have been quite so serious in a system 

based on the Delphi compiler, which generally gives very helpful error messages, but 

even if it had been possible to overcome the accompanying complexity of the Delphi 

context (cf. §1.3 above), the same fundamental issue would remain, that messages 

appropriate to the expert programmer – and therefore typically generated by any 

“industrial strength” standalone compiler – will often be unsuitable or unhelpful for the 

novice.  It was clear, therefore, that the envisaged Turtle Graphics Programming System 

would have to provide its own syntactic error handling. 

                                                                                                                                         
Turtlebox system for C++, though given the characteristics of that language and its compilers, this 

seems less likely to be suitable for novice programmers. 
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The very first version of the Turtle system, which was piloted in a self-standing 

three-week “option” course that made no claim to lead on to higher things, did not 

incorporate a compiler, but made do instead with a relatively superficial interpreter.  

This proved sufficiently successful (e.g. in respect of student results and feedback) to 

give confidence in the overall approach, but the lack of full syntax analysis somewhat 

restricted the complexity of programming constructs that were permissible, and made it 

extremely difficult to generate appropriate error messages for all syntactic failures.  

Moreover the system made no provision for procedures (an absolute essential if it was 

to act as a pathway into Delphi) or, consequently, for recursion, greatly limiting both its 

scope for genuinely stimulating experimentation and also its potential as an introduction 

to any programming concepts beyond the most basic. 

Having established that a fundamental redesign of the pilot system’s internal 

operation would be required for further progress, it seemed an obvious next step to 

make a virtue of necessity, and develop the system not only as an introduction to the 

craft of programming, but also to the concepts of programming language systems such 

as compilation, machine code, and dynamic memory management.  Having come 

through the route of assembler programming myself, I find it regrettable (albeit very 

understandable) that as the realm of applications has expanded, this fundamental aspect 

of the discipline has tended increasingly to be pushed out of modern syllabuses, so that 

even many specialist programming students today remain virtually ignorant of the 

underlying mechanisms (with consequent detriment to their understanding of other 

areas, for example data structures and complexity theory).  Hence my decision to 

develop this system around a virtual “Turtle Machine” with its own “machine code” into 

which the user’s Pascal programs would be compiled, and giving visual access to the 

results of that compilation, both static and dynamic. 

This decision made Pascal a particularly good choice of language in yet another 

respect, since Pascal was designed in part with ease of compilation in mind (e.g. Jensen 

and Wirth  [65], p. 8), making it feasible to develop a compiler whose operations would 

be accessible even to non-specialist students.  Unfortunately, however, the original type 

of Pascal “P-code” developed by Niklaus Wirth, the designer of the Pascal language, 

was too complex to provide a plausible basis for such teaching (see for example 

Wichmann  [136], Bell and Wichmann  [11], and Pemberton and Daniels  [101] ch. 10).  
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So it was necessary to design and develop a new type of Turtle Machine, with as simple 

a design as possible, yet adequate to support a wide enough range of programming 

constructs to meet the various educational aims outlined above.  

1.5 An Introduction to Computing Concepts 

The upshot of all this was that the Turtle system ended up as something rather broader 

than originally envisaged.  Having begun life as a vehicle for introducing only basic 

programming concepts, it became also a potential aid to exploration of the broader 

context of programming languages within Computer Science, and a means of developing 

a practical understanding of a wide range of relevant concepts such as: 

• high- and low-level languages, machine and assembler code; 

• the concept of a stack, and its value in computer architecture; 

• subroutine calling, return addresses, “stack frames” etc.; 

• heap structures and dynamic variable management; 

• parameter passing mechanisms, “call by reference” and “call by value”; 

• finite state machines and pushdown automata, and their value in parsing; 

• recursion, and its application in recursive descent parsing. 

Many of these are particular hard to grasp in the abstract, but perhaps their concrete and 

transparent use within the Turtle Machine may prove of value in helping students to 

learn them.13  The system has not yet been used for teaching at this level, but I hope 

before long to develop materials to support such use. 

                                                

13 It is a common observation, reinforced by Piaget, that concrete understanding develops far 

earlier in life than abstract, and is typically far easier to acquire at any stage of development.  Hazzan 

 [55], for example, drawing on parallels with research in mathematics education, gives a range of 

examples where students are assisted in learning computer science concepts by “reducing abstraction”.  

Hence it is not unrealistic to expect that studying a concrete realisation of such concepts would make 

them easier to learn, even taking into account the overhead of understanding the concrete model. 



 

 

13

1.6 Outline of the Thesis 

The remainder of the thesis is structured as follows.  Chapter 2 provides a very quick 

tour of the Turtle system from the user’s point of view.  Then Chapters 3 and 4 together 

cover use of the system for introducing programming to novices, with the former 

focusing on the choice of programming language structures and commands, and the 

latter on practical experience of three years’ teaching using the system (or its earlier 

prototype).  Chapter 4’s conclusion effectively sums up the first half of the thesis, 

reflecting on the overall value of the Turtle system in the learning and teaching of 

introductory programming. 

Chapters 5 to 7 then turn from introductory programming to the Turtle virtual 

machine, its “PCode” (virtual machine code), and its compiler.  Chapter 5 explains the 

general design of the Turtle Machine, and the way in which Turtle Graphics commands 

and simple Pascal control structures can be represented within PCode.  Chapter 6 builds 

on this to tackle the far more complex subject of procedures, digging deeper into the 

Turtle Machine to show how Pascal procedures can be handled by it, including recursion 

and parameter calling methods.  Finally, Chapter 7 explains the workings of the Turtle 

compiler, which translates the user’s Pascal source code into equivalently functioning 

Turtle PCode, in conformity with the design explained in the previous two chapters. 

It is important to note that Chapters 5 to 7 are deliberately written in a more 

discursive manner than might be expected in a typical thesis, because their role is not 

only to explain the system’s design, but also, crucially, to illustrate how that design can 

be put across in a way that would be relatively accessible to a non-expert in Computer 

Science.  These aspects of the Turtle system have not yet been used in practice to teach 

the concepts of machine code or compilation, but the system is intended to provide a 

basis for doing so.  In the absence of such road-testing, the best way of demonstrating 

the system’s potential for the task is to manifest by example how it can indeed serve as a 

vehicle for explanation at roughly the appropriate level.14 

                                                

14 However if used for teaching the system would be supplemented by additional materials such as 

definitions of the relevant abstract machines and data structures, which are clearly not necessary here. 
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Chapter 8 concludes the thesis, starting by drawing together the threads of the 

previous chapters to reflect on the system’s value in the learning and teaching of 

Computer Science (complementing the exclusive emphasis on novice programming 

which was the theme of Chapter 4’s conclusion).  It ends by summing up the project’s 

achievements, with reference to §1.7 below. 

Appendix A contains the lecture plans and coursework used when teaching the 

Turtle system in Leeds University, Appendix B collects together some ideas for future 

development, and Appendix C contains the entire contents of the system’s online Help 

file, with independent page numbering (and cross-references to those page numbers 

replacing the online hyperlinks to facilitate use in printed form). 

The Turtle system itself, which includes both the software and the online Help file, 

is available from www.leeds.ac.uk/jcom/turtle/. 
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1.7 Achievements and Novel Contributions 

My initial aim in this project was to produce a tool for a job, namely, to enhance the 

teaching of introductory programming, and I had no particular focus on creating 

something novel for its own sake.  However both my studies at the time and subsequent 

reviews of the literature have confirmed that the Turtle system does indeed represent a 

genuine innovation, not so much in the technologies that it builds on, but rather, in the 

way that these technologies are combined and presented.  The main achievements and 

novel contributions represented by this work are, I believe, as follows: 

(A1) To provide a strong case for the development of an integrated 

programming environment for novices (and non-Computing students in 

particular), combining standard programming structures, simple graphics 

primitives, comprehensive help facilities, and a standalone user-friendly 

compiler.  (Case presented in §1.1 – §1.4, supplemented in §4.4) 

(A2) To select a suitable subset of the Pascal language, combining overall 

simplicity with considerable graphical and algorithmic power, suitable to 

pave the way for graduation to Delphi.  (Discussion in Chapter 3) 

(A3) To design, program and progressively enhance a powerful, robust, and 

attractive programming environment, conforming to the requirements 

implied by (A1) and (A2), a system which has proved in practice its 

suitability for the innovative and effective teaching of novices.  (System 

illustrated in Chapter 2, and evidence of its practical value given in 

Chapter 4) 

(A4) To design a virtual Turtle Machine capable of supporting the language 

commands and structures implied by (A2) – including dynamic memory 

management, dual parameter call methods, and recursion – and yet 

sufficiently simple to be potentially comprehensible to a non-specialist 

student after a relatively modest investment of effort.  (Virtual machine 

described in Chapters 5 and 6, which also aim to demonstrate by example 

how its behaviour can be explained at a relatively simple level) 
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(A5) To design a compiler from the Pascal source code (A2) to the Turtle 

Machine’s PCode (A4), operating by methods that are sufficiently simple 

to be explained without presupposing any significant prior knowledge of 

formal language or machine theory, and sufficiently general that they can 

provide a practical introduction into the wider uses of abstract machines 

and compilation techniques.  (Compiler described in Chapter 7, its 

operation divided into three levels each of which is sufficiently 

manageable that its overall behaviour can be summarised in a single one-

page diagram, and which serve respectively to introduce finite state 

machines, pushdown automata, and recursive descent.) 

(A6) To incorporate into the programming environment a visual interface to the 

operations of the virtual machine and compiler, to enhance the system’s 

value as an introduction to Computing concepts.  (Visual Compiler 

displays introduced in §2.3, and also illustrated in §§7.3-5; overall value 

of the system in this capacity discussed in Chapter 8) 
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Chapter 2   External Design 

The external design of the Turtle Graphics Programming System can most efficiently be 

conveyed by means of a quick “guided tour” through its main facilities, so this chapter 

will accordingly be devoted to such a tour.  For simplicity, it is written as addressed to a 

user who has a computer running with the Turtle system installed. 

2.1 Getting Started 

To start up Turtle, navigate to the appropriate directory (here presumed to be 

C:\Turtle) and run the program turtle.exe.  To load an illustrative program, go 

to the Help menu and move the mouse down to the “Illustrative programs” item; then 

click on the first program in the list, named “Simple drawing with pauses”.  When the 

program appears, click on the “RUN” button just to the right of the menu: 

Figure 1:  Turtle running the “drawpause” illustrative program 

As shown in the picture above, the left-hand section of the screen is the Programming 

Area which incorporates a simple editor, while the right-hand section is the “Canvas” on 
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which graphics are created by the drawing “statements” in the program.15  The syntax of 

the program is essentially that of Pascal, except that the system includes built-in drawing 

procedures, some of which are common to virtually all Turtle Graphics implementations 

(e.g. “forward”, “right”), though others are specially provided to take advantage of this 

system’s particular facilities (e.g. “blot”, “pause”).16  The Help file contains a detailed 

walk-through of this particular program in its third section, entitled “The Program”;  this 

can be consulted if further details of the syntax or the relevant instructions are required. 

2.2 The System Menus 

Again the Help file contains a full description of the various system menus (in the six 

sections entitled “File menu”, “Edit menu”, “Layout menu”, “Compile menu”, “Options 

menu”, and “Help menu”), and there is no need to discuss them in detail here.  However 

the following summary may prove helpful for drawing attention to some of the system’s 

more distinctive aspects: 

• The File menu provides typical Windows-style facilities for clearing, loading, 

and saving the program (standardly as a text file with extension tgp), and for 

transferring images drawn on the Canvas (as bitmaps) either to the Windows 

Clipboard or to a disk file. 

                                                

15 Pascal commands are formally called “statements”, a convention mostly followed here.  The 

words “instruction” and “command” will generally be reserved for referring to PCode; where the 

distinction matters, “instruction” is used to mean a PCode (or Turtle Pascal) primitive, and “command” 

a particular instance of an instruction together with its arguments. 

16 The original Turtle Graphics philosophy, as exemplified by Papert’s discussion  [97] mentioned 

earlier in §1.2, is to include as few primitives as possible, encouraging students to build up for 

themselves more complex instructions (e.g. “circle”) as procedures based on the simple primitives such 

as “forward” and “right” (this approach is also shared by Karel the Robot  [99]).  The current system 

departs from this philosophy, in order to provide students with more immediately satisfying feedback 

from their programming efforts (e.g. by simplifying the construction of complex patterns, and 

increasing the efficiency of circle and “blot” drawing to facilitate reasonably fast real-time movement).  

See §3.4.1 below for more on this. 
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• The Edit menu again largely follows the typical Windows pattern, providing an 

“undo”/“redo” facility (which remembers up to 100 steps) and four simple 

operations involving the Windows Clipboard (which can therefore be used for 

transferring text into and out of the program editor, e.g. from the Help system or 

into a text file).  Program line indentation controls are also provided, including 

most notably an “auto-formatter”, which can if desired impose standard 

capitalisation and appropriate indentation on any legal program (and is thus 

particularly useful for a teaching context, to encourage students to keep their 

program code neatly structured). 

• The Layout menu provides two possible choices for the Canvas dimensions 

(especially useful for beginning students who find their program drawing beyond 

the standard boundaries, but have not yet encountered the “canvas” instruction).  

It also gives various options for screen layout and font choice, which can be 

particularly helpful if the system is being run on the minimum 800x600 resolution 

screen. 

• The Compile menu gives access to the various “machine code” and memory 

analysis facilities described below in §2.3, and also provides a method of running 

or halting the program independently of the “RUN” button. 

•  Most of the settings in the Options menu concern various automatic 

operations, enabling the system to be configured so that programs are processed 

immediately on loading (by compiling, running, and/or auto-formatting), the 

Canvas either cleared or preserved when a new program is run, and the auto-

formatter’s behaviour controlled.  The various configuration settings (which 

prove particularly valuable when processing large quantities of student 

assessments) can also be saved for future use, or set as defaults. 

• The Help menu provides direct access to various sections of the Help file, and 

also to a number of illustrative programs that are built into the system.  
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2.3 The Visual Compiler Displays 

To see the Visual Compiler at work, first use the Help 

menu to select the built-in illustrative “triangles” 

program (labelled “Recursion” in the menu), and click 

on “RUN”.  The program will generate the recursive 

pattern shown here (with eight levels of triangles of 

successively halved dimensions), but note that while it 

executes the “RUN” button changes to “HALT”:  you 

can click on this at any time to terminate it manually. 

Manual termination is particularly important if the trace facility is operative;  to 

enable this, select “Trace on run” from the Compile menu, which automatically selects 

also the “Analysis tables” setting, making visible a set of “tab controls” along the bottom 

of the Canvas.  Now again click on “RUN”, then “HALT” the program after a few 

seconds, and click on the tab control labelled “PCode”: 

Figure 3:  PCode and Trace displays as the “triangles” program executes 

Figure 2:  Recursive triangles 
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The “PCode” table here shows the “assembler code” into which the triangles program 

has been compiled;  the instructions can also be shown as purely numeric “machine 

code” by clicking on one of the left-hand radio buttons above the table.  The lower table 

is the trace display, which will appear only if the trace facility is operative.  This shows 

the assembler commands that have actually been executed while the program was 

running, together with their parameters.  It also shows the momentary state, just prior to 

each command’s execution, of the various program “flags”, the Heap Top Pointer 

(showing the extent of variable storage) and Procedure Register (showing which 

procedure is in progress, and how many procedures are active), and also the resulting 

state – immediately after the command has been performed – of the top three locations 

on the Program Stack (which stores the parameters of the various instructions and 

operators as these are executed, cf. §5.1 and note 47 in §6.7). 

Three other displays are also provided through the bottom tab controls: 

• A syntax analysis, including details of 

lexical divisions and also the finite state 

machine and pushdown automaton used 

to parse the Pascal program 

(cf. §§7.3-5), together with the 

corresponding indentation calculations 

for the Edit menu’s auto-indent facility; 

• An “expressions” analysis, tallying the 

various types of statement that have 

been used, grouped together by category 

and referenced by line number – this is 

particularly useful for marking student 

assignments that may require them to 

demonstrate competence with an 

appropriate range of commands (as with 

the coursework in Appendix A); 

• A list of “declarations”, showing both Figure 5:  Expressions Display 

Figure 4:  Syntax Analysis Display 

Figure 6:  Declarations Display
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the variables and the procedures that have been defined within the program, 

together with their scope and the corresponding ranges of Pascal and PCode 

instructions.  For each variable, the type and calling method are also shown, and 

for each procedure, the parent routine, parameter count and heap storage 

requirements.17  

 

For a discussion of the design of the virtual “Turtle Machine” and its “PCode”, see 

Chapters 5 and 6 below.  For details on the operation of the compiler, see Chapter 7. 

 

 We now proceed to explore the system’s use as a vehicle for the learning and 

teaching of introductory programming, focusing first (in Chapter 3) on its Turtle 

Graphics Pascal source language, and then moving on (in Chapter 4) to see how it has 

performed in practice within taught modules at the University of Leeds. 

                                                

17 In Figure 6, like Figure 5, the “ballsteps” illustrative program is used, since this gives a more 

interesting display than the “triangles” program used in Figure 4. 
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Chapter 3   The Turtle Graphics 
Pascal Source Language 

The idea of starting students on a simplified subset of a programming language is very 

familiar from the educational literature.18  Sometimes the emphasis here is on self-

contained “mini-languages” such as that used by Karel the Robot  [99] (see also the 

discussion by Brusilovsky et al.  [19]), and sometimes on progressive introduction of 

more structures within a standard language, extending the relevant subset as the students 

develop (e.g. Brusilovsky et al.  [20], DePasquale  [36]).  However given Turtle’s first 

intended role as an introduction to programming concepts for total beginners, designed 

to lead on to the far more sophisticated Delphi environment after only four lectures, it 

was clearly sensible to choose a subset of Pascal (rather than any specially invented 

language), and to fix that subset with initial learning in mind rather than to attempt to 

cater for the students’ later development.  Far better that they should achieve genuine 

competence (and confidence) with a small number of types, structures, commands etc., 

than that they should run any risk of being confused at this early stage by the niceties of 

distinctions in meaning and usage between a variety of syntactic options.19 

The same point applies to some extent to the system’s role as a vehicle for 

introducing more advanced concepts of compilation.  There would be little point, from 

this perspective, in providing a variety of control structures that are compiled in much 

the same way (e.g. “repeat” and “while”), since this would add complexity without 

widening the conceptual repertoire.  More potential benefit would come from adding a 

greater range of types and data structures (e.g. reals, strings, enumerations, sets, arrays, 

records, objects), methods of access (e.g. pointers), and subroutines (e.g. functions, 

methods, units), since these would involve significant extensions to the machine 

                                                

18 In addition to the references in the text, see for example du Boulay  [41], du Boulay et al.  [42], 

and Motil and Epstein  [86]. 

19 Lewis and Olson  [72] identify abundance of low-level primitives as a major cognitive barrier to 

programming, while Eisenberg et al.  [43] found confusions arising particularly where novices were 

presented with a variety of syntactic structures to achieve a similar effect. 
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processes and compiler techniques that the system could be used to illustrate.  However 

such extensions would have taken more time than was available in this project, and their 

implementation is anyway perhaps best postponed until practical experience has been 

gained of the system’s use in teaching computing concepts and relatively basic 

compilation, to enable more reliable judgements to be made as to whether additional 

system complexity is likely to carry too great a cost in comprehensibility and 

accessibility.  

3.1 Data Types 

3.1.1 Numbers 

Any Turtle Graphics system must make use of numbers, most obviously to specify 

lengths or angles, and here integers are indispensable.  They are simpler to handle than 

real numbers, more efficient both in respect of storage and processing speed, but also 

they are precise, enabling conditional tests for equality to be performed on them without 

having to worry about rounding inaccuracies.  Related to this is the fact that integers can 

be divided precisely into bytes, and thus conveniently used for representing a wide range 

of colours in the standard “24-bit” manner, as explained in §3.4.2 below.20  The question 

still arises, however, whether any other numeric types should be permitted within the 

system.  A case could be made both for real numbers, notably to enable greater accuracy 

in recording fractional coordinates within intricate recursive patterns, and also for bytes, 

to reflect the limited range of the virtual “machine code” instructions.  The latter case is, 

however, rather weak, because the arguments to these instructions (e.g. representing 

lengths and angles) anyway have to be integers, and the overall aim of simplicity 

therefore implies a preference for treating the basic “machine code” unit as being an 

integer in general, even if the instructions themselves are limited to a single byte.  The 

case for real numbers is somewhat stronger, but by no means decisive, because 

limitations of fractional co-ordinate accuracy are unlikely to be much of an issue within 

                                                

20 As implemented, Turtle uses four-byte integers, following the Delphi standard.  Moreover the 

PCode display allows integers to be shown in hexadecimal, so that byte values can be distinguished.   
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the programs produced by beginners, while more advanced programmers can 

straightforwardly mitigate them if necessary by adjusting the Canvas dimensions, and by 

saving and restoring coordinates at appropriate places (as illustrated by the built-in 

“Recursion factory” program).  Given also the decision to use integers as the “machine 

code” unit, the complications of introducing real numbers seem to outweigh any 

benefits.  Hence only integer numbers are accepted within the system. 

3.1.2 Other Data Types 

Turtle implicitly uses Boolean values in conditional and iterative structures (e.g. after 

“if” and “until”), but in common with many other systems, represents these as integers, 

thus avoiding the need for type distinctions within the Program Stack.  FALSE is 

represented as 0, and TRUE as −1,21 though any non-zero value will be treated as 

TRUE in conditional processing.  Turtle also explicitly recognises the “boolean” type 

(e.g. in procedure or variable declarations – as shown in the “flashlights” illustrative 

program), which can be helpful for explaining and motivating type declarations in a 

system where otherwise these might seem to be pointless.22 

No other data types are recognised, because integers and Booleans suffice for the 

fundamental concepts necessary to the system’s practical teaching role (as a preparation 

for Delphi), though there is something to be said for introducing arrays in particular, not 

only to provide more conceptual range and power for users, but also to develop the 

possibility that the Visual Compiler provides for the practical illustration of complexity 

considerations (e.g. by enabling “machine code” cycles to be counted within sorting 

algorithms).  Another natural suggestion would be to move in the direction of object-

                                                

21 −1 is a more appropriate choice than 1 because the four-byte “twos-complement” hexadecimal 

representation of −1 is FFFFFFFF, which equals the bitwise NOT(0), cf. §3.2 below. 

22 Turtle could do with further development here, since there is currently no type compatibility 

checking between Booleans and integers, and hence little benefit to be gained from declaring variables 

or procedure parameters as “boolean” rather than “integer”.  However in practice, students taught using 

the system have moved on to Delphi before detailed discussion of types has become appropriate, so it 
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orientation, with “turtles” as objects and therefore potentially multiple (cf. Appendix B 

below). 

3.2 Arithmetical and Boolean Operators 

The four basic arithmetical operators (“+”, “–”, “*”, “/”) are accommodated, though “/” 

is interpreted as integer division (i.e. “div”) given that reals are not permitted.  The 

inclusion of the complementary operator “mod” is obviously desirable too, playing a 

particularly valuable role in the creation of alternating patterns (as exemplified in the 

illustrative programs “Combining structures” and “Cycling colours”). 

The arithmetical comparison operators (“=”, “<>”, “<”, “>”, “<=”, “>=”) are 

likewise included, yielding the “boolean” values −1 (true) or 0 (false) as in §3.1.2 above.  

Use of these values enables the Boolean operators “not”, “and”, “or” and “xor” to be 

incorporated as bitwise arithmetical operators also, without ambiguity, since thus 

interpreted the Boolean and arithmetical results correspond (the point here being that 

the “twos-complement” binary representation of −1 has all bits set). 

3.3 Program Structures 

Clearly the basic conditional structure “if … then … else” is essential, and is sufficiently 

general to make “case” unnecessary.  More delicate is the choice of conditional iterative 

structure between Pascal’s “repeat … until” and “while”:  both are similarly expressive 

(in combination with “if … then … else”), so only one of them is required within a 

system whose primary aim is simplicity.  In some respects “while” is preferable, since in 

technical programming situations, initial non-satisfaction of a loop condition typically 

implies total non-performance of the loop.  However in Turtle Graphics “null” loops are 

relatively rare, and personal experience indicates that beginners tend to find the idea of a 

loop that is always performed at least once rather more intuitive, perhaps because it is 

easier to think of repeating an operation already concretely performed than to think of a 

                                                                                                                                         
has sufficed to use the mere possibility of Booleans to illustrate how variable types can differ, and hence 

to explain why more advanced systems such as Delphi require type declarations. 
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loop that is entirely conditional (see Soloway et al.  [125], Rogalski and Samurçay 

 [112]).  There is also a more particular confusion about the Pascal “while” statement 

deriving from its natural language meaning, leading some novices to expect that the loop 

condition will be tested continuously rather than once per iteration (Sleeman et al.  [121], 

Bonar and Soloway  [13]).  Finally, when sequences of operations are involved (as is 

usually the case when drawing repeated patterns) the “repeat … until” construct in 

Pascal is syntactically far easier than “while … do begin … end”, since “repeat” and 

“until” already provide the necessary bracketing.  For all these reasons, “repeat … until” 

has been preferred to “while”. 

Given the provision of “if … then … else” and “repeat … until”, there is no strict 

need for the counting iterative structure “for … do”.  However this is so useful in 

situations where an exact number of iterations is required, and so helpful and relatively 

natural for introducing the concept of a counting variable, that there is very good reason 

to include it. 

Finally, any system that aspires to teach good programming practice must make 

provision for modular divisions of the program, and given the intention of using Turtle 

as a bridge to Delphi, procedures are absolutely essential (since Delphi methods take 

this form).  Procedures if properly implemented should also permit recursion (for which 

a graphics system can provide a wonderful introduction) and – in combination with 

Pascal’s distinction between “call by value” and “call by reference” parameters – enable 

results to be returned and hence the effective definition of functions.  Such quasi-

functions lack the syntactic convenience of literal functions,23 but contexts in which this 

is a major issue seem unlikely to arise within introductory Turtle Graphics.  For the sake 

of simplicity, therefore, and to motivate the use (and hence learning) of these parameter 

distinctions, Turtle does not incorporate literal “functions” as such.24 

                                                

23 For example a function “dist” that calculates the distance between coordinates permits the 

elegant syntax “if dist(x1,y1,x2,y2) > 100 then …”, whereas the same condition requires two statements 

if the distance is instead returned as the “VAR” parameter to a procedure. 

24 Arguably the importance of functions is such that they ought to be included nonetheless, an 

argument that is likely to become decisive if Turtle is extended to other source languages. 
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3.4 Special Turtle Graphics Facilities 

3.4.1 Turtle Graphics Instructions 

In accordance with the purposes of the system, Turtle’s graphics primitives (all of which 

are explained in the online Help file) have been selected with the aim of making it easy 

to produce interesting and satisfying patterns, while at the same time avoiding 

unnecessary complexity.  “Complexity” here is partly a psychological matter – for 

example the provision of both “forward” and “back” makes it psychologically simpler to 

produce movement in two opposite directions, though logically it would be more 

economical to provide only the single instruction “forward”, which can be used with 

either a positive or a negative parameter (a similar point applies to “left” and “right”).  

The same principle of psychological ease requires inclusion of the “circle” and “blot” 

(i.e. filled circle) commands, even though in Seymour Papert’s original conception of 

Turtle Graphics, “circle” is available only as a defined rather than as a primitive 

instruction (see note 16 in §2.1 above).  Again, “thickness” is presumably theoretically 

dispensable (since one could draw multiple adjacent lines, each of width 1), but its 

provision obviously makes life much simpler. 

Most other Turtle Graphics primitives involve no such potential redundancy, and 

are designed straightforwardly to extend its graphics capabilities.  The “colour” 

instruction is obviously required; “randcol” less so, though it greatly facilitates the 

creation of visually striking patterns by novice programmers.  The four instructions 

“home”, “setx”, “sety”, and “setxy” provide absolute movement (as do operations 

involving the global coordinate variables “turtx” and “turty”, provided together with the 

direction, colour, and thickness variables “turtd”, “turtc” and “turtt”); note that “home” 

here is not redundant, because the home position is dependent on the Canvas dimensions 

and so does not involve specific coordinate settings.25  (A similar point applies to the 

                                                

25 However “setx”, “sety”, and “setxy” do involve some redundancy, e.g. “setx(100)” is equivalent 

to (though psychologically simpler than) “setxy(100,turty)”.  Educationally it is convenient to introduce 

simple x- and y-coordinate setting commands before students have been taught about the relevant global 

variables; then “setxy” serves as a useful shorthand when both x- and y-coordinates are to be set. 
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“blank” instruction, which is not equivalent to any specific rectangle filling “polygon” 

command.)  None of these four absolute movement commands involves drawing, 

whereas “forward” and “back” are sensitive in this respect to the state of the pen, 

controlled by “penup” and “pendown”.  Such sensitivity also applies to “drawxy”, but 

not to “movexy”, both of which provide relative movement.26   

The remaining Turtle primitives are “canvas” (to set the Canvas dimensions 

dynamically), “pause” (invaluable for simple debugging as well as visual effects), 

“update” and “noupdate” (which are needed only to mitigate the display speed 

limitations of computer hardware), and the related group of “polyline”, “polygon”, 

“remember”, and “forget” – these last four give a great deal of power and obviate the 

need for more specific polygon-drawing or -filling routines.  In contrast with the case of 

“circle”, note that there is no compelling argument here for dedicated “triangle”, 

“square”, or “rectangle” procedures (etc.), because the versatile “polyline” and 

“polygon” commands do not involve any increased psychological complexity:  

identifying a square by visiting its corners in turn is no less natural, but is significantly 

more generalisable, than specifying its coordinates within a dedicated routine. 

3.4.2 Colour Handling 

Turtle allows “24-bit” colours to be specified, following the Delphi convention of giving 

the three components in “BGR” order within a hexadecimal number (prefixed by “$”).  

Thus “colour($0080FF)” will create an orange, with zero intensity of blue, 128 of green, 

and 255 of red.  However for compatibility with the widespread HTML convention, 

Turtle also allows these colours to be specified in “RGB” order, prefixed by “#”, e.g. 

“colour(#FF8000)”.  24-bit colouration allows very fine variation, which can be used to 

produce “3D” shadowing effects (as in the built-in “balls3D” illustrative program). 

For introductory teaching purposes it is important to be able to access the basic 

colours more simply, and therefore eight predefined colour constants have also been 

                                                

26 Again without redundancy, since if “movexy” were to be defined as “penup” followed by 

“drawxy”, then the state of the pen would be affected, whereas “movexy” leaves it unchanged. 
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provided, namely blue, green, cyan, red, magenta, yellow, white, and black.  Each of 

these constants is precisely equivalent to the corresponding BGR integer – hence 

“colour(red)”, for example, has the same effect as “colour($FF)” or “colour(255)”. 

Further special provision is needed to facilitate such things as multi-colour counting 

loops (used to cycle colours in the “cyclecolours” illustrative program).  For this 

purpose, the numbers 1 to 8 (which following the BGR convention would all appear 

more or less jet black, with no blue or green and only a minimal intensity of red) are 

specially distinguished as not following that convention;  instead, they represent the 

eight standard colours, in the order listed above (this order being derived from the 

traditional Turtle Graphics ordering).  It is these special codes that are randomly chosen 

by the “randcol” command, and this also has the virtue of enabling “randcol” to be used 

as a simple random number generator (as shown in two of the illustrative programs:  

“Cycling colours” and “Using Booleans”) 

 

Having now examined the Pascal language structures that are supported by the 

Turtle system, we shall see in Chapter 4 how it has performed as a vehicle for 

introducing this limited language within elective modules at the University of Leeds 

(where it has served as a prelude to Delphi Pascal). 
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Chapter 4   Using Turtle to Teach 
Introductory Programming  

The Turtle system is designed primarily as a learning rather than a teaching system, in 

that it aims to encourage students to experiment and thus discover for themselves the 

creative pleasure of programming, in particular by working through the self-teaching 

exercises.  But it has been used since 2000 to introduce programming within formal 

taught modules for elective students, and since 2001 as the basis for the “Programming 

Concepts” core of a full 10-credit module which then led on to Delphi programming.  

So it is appropriate here to review this experience with the system, before going on to a 

wider discussion of its place within the educational curriculum 

4.1 Brief Outline of the Course 

The “Programming Concepts” component consists of four compulsory lectures followed 

by a final optional lecture which gives a tour of the Visual Compiler.  Full lecture plans 

for the compulsory lectures, together with an example coursework, are provided in 

Appendix A.  The lectures are built almost entirely around the exercises provided in the 

Turtle Help file, and in that sense resemble example classes rather than typical formal 

lectures. 

1. The first lecture introduces the Turtle system and the idea of an algorithm, running through 

simple drawing commands and using the opportunities afforded by the first two exercises to 

familiarise students with relevant illustrative programs, help resources, and other Turtle 

facilities that they might find useful. 

2. The second lecture builds on the first, quickly reviewing what it covered and then moving on 

to introduce the idea of a variable and of a counting loop, combining these with a discussion 

of program layout, systematic program development, and debugging techniques (e.g. using 

pauses and “blot” markers). 

3. The third lecture is focused on procedures, emphasising the importance of modularity to 

enhance comprehensibility and going on to show the amazing power of recursion though a 

simple “triangle” example which is explained using the metaphor of the “Cat in the Hat”, 
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with recursive calls being introduced one at a time until the picture shown in Figure 2 

(p. 20) is produced.  The built-in “Recursion Factory” program invites the students to 

experiment for themselves with recursive patterns of real complexity and aesthetic interest. 

4. The fourth lecture introduces repeat loops in the context of producing animated graphics, 

such as the “bouncing balls” effect in two of the illustrative programs (“ballsteps” and 

“multibounce”).  The remaining illustrative programs are also briefly reviewed, to give the 

students ideas that they can follow up for themselves in their coursework. 

The coursework, assigned at the end of the fourth lecture, is designed primarily as a 

learning rather than an assessment exercise, to give confidence in elementary 

programming through pleasurable exploration and creativity.  Accordingly, students are 

given free rein to write a graphical program of their choice, and are encouraged to make 

it entertaining.  To ensure appropriate coverage they are required to use a wide range of 

Turtle commands and program constructs, but the work is not difficult, and even timid 

students can safely get through it with support – though the main focus of such support 

is enabling them to help themselves by making use of the Turtle system’s built-in 

resources (notably the illustrative programs and the Help file).  In addition to their main 

program, students are also asked to produce two short illustrative programs of their 

own, each designed to highlight the features of a different language construct.  The 

intention of this exercise is to give them a relatively concrete task to start on while 

working out their ideas, to encourage them to reflect on the use of program structures, 

and to extend their coursework without requiring them to put all their eggs in the one 

basket of their main program.  It also brings the benefit of giving insight into students’ 

perception of the structures in question, and can provide useful additional illustrative 

resources to benefit future cohorts. 

The next four pages show examples of the students’ work (labelled and arranged to 

correspond with their organisation on the Turtle website), though virtually every one of 

these programs involved animation, and the pictures show only a snapshot – or in some 

cases two – of what were in many cases amusing programs.  It is very clear that the 

Turtle system both entertained these students and inspired them creatively. 
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4.2 Students’ Perceptions of the Course 

As discussed in §1.2 above, the primary aim of the course is to introduce novice 

students to programming in an engaging and non-threatening manner, preparing the 

ground for more “serious” programming in follow-on courses.  For this reason, student 

perception is the most important single criterion by which the course must be judged, 

and accordingly, anonymous feedback was sought systematically through a specially 

written program which invited students to express their views immediately after having 

submitted their coursework.  (Similar feedback was also solicited for all other 

components in the ACOM teaching programme, enabling comparisons to be drawn.)  To 

maximise the chance that all students would indeed express their views as fully as 

possible, the feedback interface was divided in two, the first simply asking them to click 

on “radio” buttons to give an overall appraisal, and the second inviting more detailed 

opinions.  As a result, the feedback response rate for the first part was extremely high 

(typically 75% to nearly 100%, depending on the question), but only around one in six 

of the students – apparently disproportionately those with the stronger opinions – also 

Figure 7:  The automated student feedback analysis program 
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took advantage of the second part to emphasise specific points.  The feedback was 

analysed using a Feedback Reporter program, which broadly mirrored the structure of 

the students’ feedback interface (see Figure 7). 

In assessing this student feedback, most weight must be put on the overall appraisal 

“radio button” responses, because they are so much more representative than the written 

comments.  Over the three sessions in question, the results were as follows, averaging 

each question’s responses on a scale that ranges from 100% (for the most positive 

available answer) to 0% (for the most negative): 

     

 2000-
2001 

2001-
2002 

2002-
2003 

(ACOM 
Norm) 

The lectures were well structured and organised 87.0% 84.3% 85.7% (70%) 

The lecturer was always clear and audible 90.0% 88.4% 89.3% (70%) 

The lecturer made good use of examples etc. – 86.8% 89.3% (70%) 

The lecturer made things easier to understand – 81.7% 79.8% (66%) 

The lecturer helped to make things interesting – 83.4% 86.9% (62%) 

The lecturer seemed responsive and approachable 89.0% 85.8% 90.5% (67%) 

The coursework was well designed and appropriate 83.8% 82.9% 76.8% (67%) 

I feel this work has taught me useful skills 81.0% 78.0% 75.6% (73%) 

The lecture handouts (or booklet) were very helpful 90.0% 84.1% 83.9% (72%) 

It is apparent that these are extremely positive results, and this impression is confirmed 

when they are compared against the overall responses for the 27 highly varied 

components that have been delivered within the ACOM “IT Skills” programme over the 

period, which have averaged around the approximate figures shown in the last column.  

Even though the ACOM programme as a whole is seen as extremely successful with 

students, “Programming Concepts” has consistently come at the top of its feedback 

league.  Only one of the other 26 components has ever exceeded it over this time, 

namely the small option “IT, Politics and Society”, and that only in 2002-03. 

Although the students’ written feedback must be viewed with considerable caution, 

because of its unsystematic and unrepresentative nature, it gratifyingly conforms very 
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well with the positive impression given by the overall statistics above, with many 

comments expressing positive enjoyment of the learning experience: 

• I found this by far the most enjoyable thing I have done in ACOM so far! 
• I found this to be a very tough, yet very enjoyable module.  With practice, all of the concepts 

become clear and the results are very satisfying.  I thought Peter Millican’s teaching was 
excellent. 

• The online Turtle Graphics help was very helpful. 
• Handouts weren't really necessary as all of the necessary information was contained within the 

program itself.  I found myself quite keen on doing the exercises and coursework but this may 
have been because it gave me a break from my other homework.  A good programming starter 
program. 

• I found this core both stimulating and enjoyable.  Peter Millican's approach to teaching 
programming makes the subject less mind-boggling. 

• Very well structured and well taught – Peter made it very easy to understand the concepts of 
the programming language being taught. 

• A superb introduction to computer programming;  I'd recommend it to anyone from the very 
young to the very old.  Peter Millican's performance of “The Cat in the Hat”, to elucidate 
recursion, just has to be seen to be believed;  it ought to be filmed and distributed to all 
programming students everywhere. 

• Being able to download "Turtle Graphics" to use on my computer was very useful. 
• It was REALLY useful to have small exercises set each week.  It helped to consolidate the 

material covered in the lectures and it was good to be able to try out specific tasks to make sure 
that you weren't having any problems with the work.  Overall the lectures were brilliant, the 
best lectures I've ever been to!! 

• The only difficult aspect of this coursework was formulating an idea for a program for which 
we could apply the relevant programming.  Apart from this, the course was excellent. 

• It was a pleasant and not very daunting introduction to programming. 
• I found this part of the module very enjoyable and very useful.  
• I really enjoyed doing this, but I sat down and worked it all out for myself rather than reading 

the notes.  The lecturer was very helpful and seemed really enthusiastic about the work 
himself. 

• Enjoyed it.  Turtle Graphics could be easier  if it had a grid on the page so you could always 
see where you are 

• I thought the course was very interesting and quite challenging.  I thought the turtle graphics 
program was very helpful as the introduction to programming as there was visible results so 
you felt like you were actually achieving something. 

• I enjoyed the 'cat in the hat' analogy to recursion.  Though it did seem somewhat silly, it did 
help to clarify the idea of recursion. 

• The Programming Core was a fun and interesting one 
• very interesting 
• It was a very good module, thanks. 
• Programming was a new experience for me but one I have enjoyed despite it being so time 

consuming, I look forward to pursuing more programming options later in my university life. 
• Turtle graphics’ in-built help and examples were extremely useful.  I found I learnt a lot just by 

playing around with the illustrative programs.  The lectures were also very useful, well 
explained and relevant.  Happy customer! 

• Would have been interesting to study the applications of recursion in greater detail, as this was 
a fascinating area of the course.  Many thanks.  

• I thought this was a great set of lectures.  I found them useful, interesting, and thoroughly 
enjoyable. 
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Of the total of 38 comments provided over 2000-2002, 30 were clearly positive and only 

3 negative, with one of these expressing uncertainty over what the coursework was 

really looking for, and the others concerning the availability of demonstrators.  Other 

comments included suggestions for the course, namely that more time should be spent 

on basic mathematics, repeat loops, or procedures and parameters, and three 

recommendations for improvements to the Turtle system itself, namely, inclusion of a 

visual grid, making the “Are you sure?” quitting prompt more selective, and adding 

keyboard shortcuts.  The last two of these suggestions have since been acted on. 

4.3 How Well Did the Students Learn? 

As explained above in §4.1, the coursework required students to produce three 

programs, the longest of which was expected to use each of a fair range of commands 

and structures.  (The required range, together with a tally for the last-compiled program, 

can be seen in the “Expressions” table in the Visual Compiler display, shown on p. 21 – 

this was available to students to check their work, and proved invaluable for markers.)  

To do even moderately well, students had to exhibit reasonable competence with a 

number of programming constructs, and to put these together within a coherent 

program of their own design.  Moreover because their programs were all so visibly 

distinctive, and were often evidently objects of pride and enjoyment (as manifest from 

the coloured plates), there was little temptation or opportunity for students to copy from 

others, except in the unlikely event that one of them effectively did the coursework 

twice over.  Hence one can be fairly confident that those students who passed the 

module had at least mastered some of the basic skills of programming, such as linking 

sequences of commands together, dividing code into procedures, iterating with counting 

and repeat loops, and using simple conditionals. 

Given this background, it is gratifying how few students failed to reach a pass 

standard in their coursework – over the sessions 2000-2003, only 5.9% were graded less 

than 40.  To put this in perspective, the nearest comparator available within Leeds 

University is the module COMP1150, “Introduction to Programming on the PC”, which 

ran as an elective for a similar range of students between 1993 and 1999, also teaching 

Pascal.  Obviously over the last decade there has been considerable change, not only in 

computer systems and staff teaching allocations, but perhaps even more so in the typical 
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profile of a Leeds student (more IT literate but arguably less “elite”, mathematically 

weaker, and more used to “spoon-feeding”), so such comparisons must be viewed with 

some caution.  But if we focus on the last three years of COMP1150, over which period 

it was taught by two different lecturers with a single package – namely Borland Pascal 

for Windows – the contrast with the Turtle Graphics course (also taught by two 

different lecturers over the relevant period) is very striking: 

Figure 8:  Grade profile for the 1996-99 course teaching Borland Pascal 

Figure 9:  Grade profile for the 2000-03 course teaching Turtle Graphics Pascal 
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The peak in the Borland Pascal “37-39” column actually represents pass grades, because 

prior to 2000 the Leeds pass threshold was 37.27  However the peak itself occurs 

because students are limited to a bare pass on resitting, so the fact remains that many of 

these students initially failed. 

The detailed figures are shown in the table below.  Particularly notable is that on 

the earlier course, 27.8% of students scored below 40, and of these, 17.6% below 

  
Borland Pascal 

for Windows 
1996-1999 

Turtle Graphics 
Programming 

2000-2003 
        

Number Average Number Average 
205 55.05 307 61.05 

        
20-22 2.9% 20-22 1.0% 
23-25 2.9% 23-25 0.3% 
26-29 3.9% 26-29 0.7% 
30-32 1.5% 30-32 0.7% 
33-36 6.3% 33-36 2.0% 
37-39 10.2% 37-39 1.3% 
40-42 2.9% 40-42 2.0% 
43-45 3.9% 43-45 2.9% 
46-49 6.3% 46-49 5.2% 
50-52 3.9% 50-52 6.2% 
53-55 5.9% 53-55 1.6% 
56-59 4.9% 56-59 13.4% 
60-62 6.3% 60-62 13.0% 
63-65 5.9% 63-65 12.7% 
66-69 7.8% 66-69 13.7% 
70-72 4.4% 70-72 12.1% 
73-75 4.4% 73-75 4.6% 
76-79 2.0% 76-79 3.6% 
80-82 5.4% 80-82 2.3% 
83-85 2.4% 83-85 1.0% 
86-90 5.9% 86-90 0.0% 

37, whereas on the Turtle Graphics 

course, these figures reduced to 6.0% 

and 4.7% respectively.  But any 

suspicion that the contrast between the 

grade profiles might have resulted from 

a crude “dumbing down” is easily 

dispelled by looking at the other end of 

the scale, where on the Borland Pascal 

course 13.7% scored over 80, while the 

corresponding figure for Turtle 

Graphics was only 3.3%.  As this 

indicates, the later course was in some 

ways rather more demanding than its 

predecessor, involving additional 

“advanced” concepts such as recursion.  

The crucial difference between the two 

was apparently that Turtle made it far 

easier for students to get started. 
    

Again, it must be emphasised that this teaching did not take place in the context of a 

controlled study or systematic comparisons with other courses, so conclusions regarding 

                                                

27 This is why the grouping in the 30’s takes the form “30-32”, “33-36” and “37-39”.  Within the 

40’s (and likewise for the other “decades”) it more appropriate to use the grouping “40-42”, “43-45” 

and “46-49”, because of all these grades, 49 is by far the least used. 
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the effectiveness of the Turtle system must be to that extent tentative.  Potential 

complicating factors include the following: 

• Those taking the introductory programming component were self-selecting elective students, 

free to drop out or switch options had they so chosen, and this might be expected to reduce 

the “tail” of failures characteristic of compulsory programming courses.  However this does 

nothing to impugn the favourable comparison with the 1996-99 Borland Pascal course, 

which was also entirely optional.28 

• Turtle covered only the first four weeks of programming, enabling students to get by without 

having to handle seriously complex programs.  However this point should be taken in the 

context of §4.4 below, which highlights evidence that fundamental student difficulties occur 

at a very early stage of understanding, so an introductory component arguably faces a task 

which is harder, rather than easier, compared to later components.  Moreover the programs 

produced on the Turtle component were not in any case particularly simple – many extended 

to several hundred lines and numerous procedures (though admittedly they were simple in 

terms of data structures and techniques). 

• Turtle was taught by two members of staff who were individually very committed to the 

system, including its developer (the other was Dr Sarah Kattau, who has contributed 

teaching materials for Turtle and been its most assiduous tester).  Moreover both teachers 

have scored well in other teaching, implying that the good results and feedback in the 

programming component might have been due at least in part to their general teaching 

abilities and their specific enthusiasm for Turtle.29  This concern probably has an element of 

truth, but it risks putting the cart before the horse, because part of what makes an effective 

teacher is the ability to identify and develop effective tools and methods.  If Turtle is seen by 

teachers elsewhere as a useful tool, there is no evident reason why it should not inspire them 

and their students with comparable enthusiasm to that which in Leeds has led to such 

promising results. 

                                                

28 Indeed if anything this makes the comparison more favourable, since the earlier course was an 

integrated module, making early dropouts far more likely than in the Turtle component where students 

were not anyway committed to continuing with programming beyond the first four weeks. 

29 A sort of “Hawthorne Effect” (Mayo  [81], ch. 3) might be suspected here, whereby the mere act 

of studying students’ performance can serve to improve it, but in fact this supposed phenomenon is 

considered rather dubious in the light of later studies (e.g. Parsons  [98], Adair  [2]), and besides, the 

Turtle component – with its self-learning materials – put very little emphasis on student monitoring. 
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4.4 Conclusion:  The Value of Turtle as a Vehicle for 
Introducing Programming 

Clearly the Turtle system’s ambitions in respect of introducing novices to programming 

are very limited – it aims to provide a good basis for the first month or so of learning, 

and makes no attempt to convey software engineering principles of any sophistication.  

Turtle’s value must accordingly be measured against this limited ambition, and by that 

standard the evidence given above strongly suggests that it is a success.  Not only do 

novice students cope with it (and many choose to go on to more “serious” programming 

in Delphi,30 generally with success), but they are excited and enthused at discovering for 

themselves the pleasure of intellectual creativity.  Here I would suggest a strong 

similarity between the potential appeal of programming and that of playing chess, as 

famously expressed by the great Siegbert Tarrasch in the preface to his last book, The 

Game of Chess: 

 Chess is a form of intellectual productiveness, therein lies its peculiar charm.  Intellectual 

productiveness is one of the greatest joys – if not the greatest one – of human existence.  It is not 

everyone who can write a play, or build a bridge, or even make a good joke.  But in chess everyone 

can, everyone must, be intellectually productive, and so can share in this select delight.  I have 

always a slight feeling of pity for the man who has no knowledge of chess, just as I would pity the 

man who has remained ignorant of love.  Chess, like love, like music, has the power to make men 

happy. 

If playing with Turtle can harness some of this power, then the benefits may be 

considerable. 

Scepticism about the value of this approach is most likely to be prompted by the 

thought that Turtle is just a “toy” system, far too simple to be of significant use for 

introducing real programming.  But such scepticism is hard to maintain when faced with 

                                                

30 I have not included statistics from the two Delphi courses that followed on from the Turtle-

based “Programming Concepts” core, partly for reasons of space but also because they were optional, 

making comparison with previous modules problematic.  In practice, the vast majority of students have 

passed, with an overall average around 56-60, and feedback has been very positive (mostly 75%-85%). 
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evidence of how badly many students fare when taught programming in a traditional 

manner.  Thus McCracken et al.  [83] highlight “concerns expressed by many computer 

science educators about their students’ lack of programming skills … often … focused 

on basic mastery of fundamental skills”, and give supporting references together with 

research indicating that such concerns are fully warranted.  In the abstracts to two recent 

papers, Chalk et al.  [28] and Jenkins  [61] both give considerable prominence to a 

depressing assessment of the current situation:  “There is a national crisis in the teaching 

and learning of programming” and “The graduating student who professes a complete 

inability to write the simplest program is commonplace”.  Likewise according to Jenkins 

and Davy  [64], many students “appear to be totally unable to grasp the basic concepts”, 

leading them later in their studies to “insist that they want to avoid programming at all 

costs”.31 

But what is particularly striking about all this is the level of expertise at which the 

students concerned are faltering, as shown by a wide variety of studies.32  Variable 

assignment and initialisation are often misunderstood (du Boulay  [41], Samurçay  [114]), 

while particularly common bugs are those associated with loops (du Boulay  [41], 

Spohrer et al.  [128]) and conditionals (Sleeman et al.  [121], Hoc  [56], Putnam et al. 

 [107]), and general difficulties with tracing flow of control (Perkins et al.  [102], 

Rogalski and Samurçay  [112]) – precisely the sorts of problems that might be alleviated 

if students spent time experimenting with systems of this type.33  In the context of such 

problems with flow of control, it is hardly surprising that recursion is widely viewed as 

                                                

31 Many more references could easily be given, for example Shackelford and Badre  [115], and 

those in Deek  [34] and in the first paragraph of Sims-Knight  [119].  For consideration of why 

programming is so difficult, see e.g. Guzdial  [49], Jenkins  [62], Moser  [85] and the references they cite. 

32 Two useful reviews of such studies are provided by Winslow  [138] and Robins et al.  [111]. 

33 Here I focus on Turtle’s role as a vehicle for introductory program development and execution, 

but we shall see later (in §8.1.1) that it has another role which can help in dealing with these problems.  

There is considerable evidence that students’ problems with control structures derive in large part from 

an inability to conceive an appropriate model of the computer’s behaviour (see for example the reviews 

by Pane and Myers  [95], pp. 30, 32; Robins et al.  [111], pp. 149-53).  Turtle is distinctive amongst 

introductory programming systems in incorporating an explicit virtual machine which is designed to 

enable even non-specialist users (though admittedly not total novices) to establish such a mental model. 
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an extremely difficult topic (e.g. Dicheva and Close  [38], Kahney  [66], Kessler and 

Anderson  [68], Levy  [71]).  Yet the Turtle system, for all its relative simplicity, can very 

effectively convey an understanding of recursion, sufficient at least to persuade most of 

a novice class that they grasp it after only three lectures.34 

Even if the level of understanding conveyed by experimenting with Turtle were 

relatively modest, the very fact that it can give students confidence and enjoyment is 

itself of potentially major significance.  Robins et al. ( [111], p. 158) summarise research 

by Linn and Dalby  [75] and Kurland et al.  [70] in words that could serve as a manifesto 

for the type of graphics-based self-learning system that Turtle exemplifies: 

The reinforcement and encouragement derived from creating a working program can be very 

powerful.  In this context students can work and learn on their own and at their own pace, and 

programming can be a rich source of problem-solving experience.  Working on easily accessible 

tasks, especially programs with graphical and animated output, can be stimulating and motivating 

for students. 

They also report a survey by Rountree et al.  [113] as indicating that for novice students, 

“the most reliable indicator of success was the grade that the student expected to 

achieve” (p. 155).  Obviously it can be debated here which factor was cause and which 

effect, but Jenkins  [61] argues that a student’s expectation of success is crucial to its 

achievement, since such expectation impacts so directly on student motivation – drawing 

on Keller  [67], he suggests that motivation can be thought of as the multiplicative 

product of expectancy and the perceived value of success.  Such a view would strongly 

support the use of any system, however modest, that can increase students’ enjoyment 

and confidence and introduce programming in a positive manner. 

A related virtue of the Turtle style of learning is that students, as their confidence 

grows, are strongly motivated to enhance their own designs, adding features to 

graphically interesting programs that evince evident pride and satisfaction.  Hence from 

                                                

34 At the end of each year’s third Turtle lecture, most students have raised their hands when asked 

to indicate whether they understand the “triangles” example (§2.3).  Obviously this does not prove that 

they have a deep and secure understanding, but it is surely significant that this much can be achieved 

with novices less than an hour after they have first acquired the concept of a procedure. 
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simple beginnings, students characteristically end up developing programs of significant 

complexity, and thus encounter at an early stage the typical problems of design and plan 

composition that seem to underlie so many of the difficulties that beset inexperienced 

programmers (including many “bugs” that are standardly, though often perhaps 

mistakenly, attributed to syntactic difficulties, cf. Spohrer and Soloway  [127], 

Winslow [138], Pane and Myers  [95] p. 30).  This gives an excellent context for novice 

students to encounter and overcome such problems, where they have willingly taken 

them on, have a strong personal motivation, also a fairly clear conception of what they 

are trying to achieve, and are working within a system that gives straightforward, 

visible, and immediate feedback.  Having developed the strategies to become “effective” 

(Robins et al.  [111], pp. 165-6) in this context, the hope is that they can then take these 

strategies forward to other, more advanced, systems. 

The value of developing this sort of initial competence (and confidence) on simple 

systems is emphasised by the research of Hagan and Markham  [51], who found that 

prior programming experience brings a major continuing benefit to those embarking on 

Computing degree programmes (cf. also Cooper et al.  [31]).  This opens another 

possible role for Turtle, as a pre-university “taster”, taking advantage of the system’s 

engaging character and built-in independent learning resources to provide advance 

preparation prior to formal courses.  In a somewhat similar vein, Turtle could be used to 

assess student’s varied programming backgrounds and aptitudes, playing the same sort 

of role that Poulton  [105] suggests for LOGO, but with the advantage of introducing a 

more standard syntax that might well be useful to them in the future, and giving students 

the possibility of exploration into the Turtle Machine, which may be particularly 

appreciated by those who could otherwise find the exercise trivial. 

 

This concludes our detailed discussion of Turtle as a vehicle for introductory 

programming.  In Chapter 5 we move on to the second half of the thesis, concerned 

with the virtual Turtle Machine and its operations, and thus having a teaching 

orientation towards Computer Science rather than introductory programming. 
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Chapter 5   The Virtual Turtle Machine 
and its “PCode” Object Language 

By far the most difficult aspect of the system design was the development of a virtual 

“Turtle Machine” capable of sustaining full recursive and versatile parameter handling 

behaviour whilst remaining simple enough to be broadly comprehensible (after only a 

moderate amount of study) to a non-specialist.  Perhaps the acid test here is whether the 

Help file sections on “An Introduction to PCode”, “Technical Note on Variables, 

Procedures and Parameters”, and “PCode Reference Guide” are in fact potentially 

accessible to interested students who have not studied the relevant computer science in 

detail.  Experience here is positive, both by reference to the students themselves and to a 

peer observer (Dr. John Davy), no doubt in large part because this aspect of the system 

has been confined to purely optional final lectures, designed to appeal to self-selected 

enthusiasts within the student body.  (However even these enthusiasts would have had 

little chance of understanding standard textbook presentations of the relevant theory, so 

this success is gratifying.)  In these next two chapters, I shall approach the virtual Turtle 

Machine from the opposite direction to the Help file, focusing more on explaining why it 

has the structure it does, rather than on the detail of how that structure operates in 

practice.  At the same time, I shall endeavour to explain these things in a way that 

presupposes very little technical background, so that the chapters can serve at the same 

time as an illustration of how the Turtle system can provide an appropriate vehicle for 

Computer Science education at the non-specialist level. 

5.1 Turtle Graphics Commands, the Program Stack, 
and Arithmetical/Boolean Operators 

Since the educational aim of the Turtle Machine is to give an insight into the general 

behaviour of a compiler and dynamic memory management, rather than the specifics of 

graphical processing, it is clearly appropriate to keep the handling of Turtle Graphics 

commands as simple as possible, which is done by straightforwardly defining primitive 

“machine code” instructions corresponding to all of the Turtle Graphics primitives.  

These are shown in the following table, where each instruction is followed by the 
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relevant “assembler” mnemonic and “machine code” value in decimal and hexadecimal 

(using the Delphi, and hence Turtle, prefix convention of “$”).  Here they are ordered 

according to their logical category and stack effects, an organisation that should be 

evident from the Help file’s “PCode Reference Guide”:35 
 

Turtle 
instruction 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

    
     

Turtle 
instruction 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

penup PNUP 64 $40  Colour COLR 103 $67 

pendown PNDN 65 $41  randcol RNDC 104 $68 

update UDAT 66 $42  blank BLNK 105 $69 

noupdate NDAT 67 $43  pause WAIT 106 $6A

home HOME 80 $50  circle CIRC 112 $70 

remember RMBR 81 $51  blot BLOT 113 $71 

forward FWRD 96 $60  polyline POLY 114 $72 

back BACK 97 $61  polygon    FILL 115 $73 

left LEFT 98 $62  forget FRGT 116 $74 

right RGHT 99 $63  movexy MVXY 128 $80 

setx SETX 100 $64  drawxy DRXY 129 $81 

sety SETY 101 $65  setxy TOXY 130 $82 

thickness THIK 102 $66  canvas CANV 136 $88 

Some of these instructions (e.g. “home”) require no parameters, some require just one 

(e.g. “forward”), and some require two (e.g. “movexy”) or more (i.e. “canvas”) – given 

this variety, the simplest way of delivering these parameters in a uniform manner within 

the compiled machine code is by means of a Program Stack (or just the capitalised 

“Stack” for short).  Such a stack also provides the simplest way of handling arithmetical 

calculations in reverse Polish fashion, and this integrates easily with its use for parameter 

                                                

35 In this and the next chapter, all of the various PCode commands will be discussed (with the sole 

exception of the “NULL” command, code 0, which does nothing whatever), but owing to constraints of 

space, in most cases their precise behaviour is not specified.  For details of all PCode commands, please 

consult the Help file section just referred to. 
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passing.  Thus for example the command: 

 movexy(3+4*5,15-7) 

should involve the following sequence of operations: 

 Push 3 onto the Stack 

 Push 4 onto the Stack 

 Push 5 onto the Stack 

 Multiply the top two Stack values, leaving the result (i.e. 20) in their place 

 Add the top two Stack values, leaving the result (i.e. 23) in their place 

 Push 15 onto the Stack 

 Push 7 onto the Stack 

 Subtract the top Stack value from the next, leaving the result (i.e. 8) in their place  

 Execute MVXY, pulling its two parameters (i.e. 23 and 8) from the Stack  

Since any student who aspires to understand this sort of thing obviously needs to have 

grasped the concept of a stack,36 the simplest possible structure for the desired virtual 

Turtle Machine is one based on an explicit “hardware stack” architecture, taking 

advantage of this to eliminate as far as possible the need for any other parameter storage 

registers.  As we shall see, such a simplification is indeed entirely feasible. 

The use of a stack-based architecture avoids any need to consider “hardware” 

operations at any lower level (i.e. we can ignore the issue of how the Stack is to be 

implemented), and this enables us to determine very straightforwardly the required 

behaviour both of the Turtle Graphics primitive “machine code” commands, and also the 

various arithmetic and Boolean operators.  These must operate on the top Stack value 

or the top two (and in the latter case, must treat these in an appropriate order, so that 

SUBT, for example, subtracts the top value from the next, as in the italicised example 

above);37  the calculated result of each operation must then replace the used values on 

top of the Stack.  Working out the specific behaviour of each particular instruction from 

                                                

36 This is a virtue rather than a drawback, since it means that the Turtle system provides a useful 

vehicle for introducing (and illustrating the tremendous practical value of) this vital data structure. 

37 All this applies equally to the relevant Turtle Graphics “machine code” commands from the 

previous table, as illustrated by “MVXY” in the italicised example. 
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this general pattern is then very simple – they are merely listed here, but see the “PCode 

Reference Guide” (in the online Help file) for details if desired: 
 

Turtle 
operator 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

    
     

Turtle 
operator 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

– (unary) NEG 144 $90  or OR 193 $C1

Not NOT 160 $A0  xor XOR 194 $C2

+ PLUS 176 $B0  = EQAL 208 $D0

– (binary) SUBT 177 $B1  <> NOEQ 209 $D1

* MULT 178 $B2  < LESS 210 $D2

/ DIV 179 $B3  > MORE 211 $D3

mod MOD 180 $B4  <= LSEQ 212 $D4

and AND 192 $C0  >= MREQ 213 $D5

5.2 Command Parameters, Global Variables, and the 
Heap 

An issue not covered in the previous section is how the various command parameters, or 

numbers to be operated upon, are to be loaded, or “pushed”, onto the Program Stack in 

the first place.  Where they are straightforward integers (rather than variables), this is 

accomplished using the “LDIN” machine instruction: 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

load integer (onto Stack) LDIN 16 $10 

So we can now derive the appropriate compilation of the various simple statements in 

the first built-in illustrative program (seen in §2.1 above), for example: 

forward(450); LDIN 450  FWRD 

pause(1000); LDIN 1000  WAIT 

right(90); LDIN 90  RGHT 

thickness(9); LDIN 9  THIK 
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Suppose, however, that we wish to compile a statement that operates on a global 

variable, for example: 

forward(turty);    

which moves the turtle forward by a distance corresponding to its current y-coordinate.  

(Here we take advantage of the fact that “turty” is a predefined global variable, and so 

can be discussed without worrying about the details of variable declarations.)  This 

command is obviously similar to the “forward(450)” compiled above, except that here 

the parameter to FWRD has to be loaded onto the Program Stack from the storage 

address of the global variable “turty”, rather than being loaded as a fixed integer. 

Global variables are stored sequentially at the bottom of a structure called the Heap, 

which begins with the five predefined globals “turtx”, “turty”, “turtd”, “turtt”, and 

“turtc” (representing the current turtle x-coordinate, y-coordinate, direction, pen 

thickness, and colour) and then continues with any global variables that may be defined 

within the running program.  The remainder of the Heap is used for the storage of local 

variables, which we’ll come to later (see §§6.2-4): 

Heap structure:  <any local variables declared within 
procedures that are currently active> 

  <any global variables declared within 
the currently running program> 

 (index 5) turtc 

 (index 4) turtt 

 (index 3) turtd 

 (index 2) turty 

 (index 1) turtx 

Figure 10:  Overall heap structure, showing predefined global variables 

Since “turty” has an index number of 2, to compile the statement “forward(turty)” we 

need an appropriate PCode command for loading the global variable with index 2 onto 

the Program Stack.  This command is “LDVG 2”, giving the compiled result: 
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forward(turty); LDVG 2  FWRD 

The inverse PCode instruction to “LDVG” is “STVG”, which pulls (or “pops”) the 

top value from the Program Stack and stores it in the appropriately indexed global 

variable.  The codes of these two instructions are as follows: 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

load global variable LDVG 17 $11 

store global variable STVG 33 $21 

Together with the PCode commands already introduced, these enable the compilation of 

assignments and other operations involving global variables.  The following fragment, 

for example, shows the start of one of the built-in illustrative programs: 

PROGRAM cyclecolours;        

VAR length: integer;        

    cinc: integer;        

    nextc: integer;        

BEGIN        

 randcol(5); LDIN 5  RNDC 

 cinc:=turtc-1; LDVG 5  LDIN 1  SUBT  STVG 7 

 randcol(6); LDIN 6  RNDC 

 length:=0; LDIN 0  STVG 6 

When this is compiled, the three newly declared global variables “length”, “cinc” and 

“nextc” are assigned addresses 6, 7, and 8 on the Heap, directly above the five 

predefined globals.  Hence the last compiled line above, which has the effect of loading 

the integer 0 onto the Stack and then storing this in global variable index 6, is indeed 

equivalent to “length:=0”.  The second compiled line is more complex, involving a 

calculation prior to the global assignment.  It begins by loading variable 5 (i.e. “turtc”) 

onto the Stack, then the integer 1 is also loaded and SUBT is performed, which leaves 

the result of the subtraction “turtc–1” on the Stack.  Finally this result is stored in global 

variable index 7 (i.e. “cinc”), yielding the desired “cinc:=turtc–1”. 
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5.3 PCode Sequential Structure and Flow Control 

5.3.1 PCode Line Structure, Storage, and Sequencing 

Given the educational purpose of the Turtle virtual machine, easy comprehensibility of 

its PCode is far more important than economic storage and processing.  Hence it makes 

sense to divide it, for both logical and display purposes, into small sections 

(henceforward “code lines”) corresponding to individual Turtle Graphics commands or 

other relatively self-contained units, as illustrated by the four code lines (“LDIN 5  

RNDC” etc.) shown in the short compilation table on the previous page.  This implies a 

storage overhead, because to preserve the line structure of the code, it is not enough 

just to store the relevant PCode integers as a continuous undifferentiated sequence.  An 

additional code is needed within each line, either at the beginning (to specify the length 

of each line), or at the end (to act as a terminator).  The former method is used for the 

actual storage of “Turtle Graphics Compiled PCode” files (extension “.tgc”) when they 

are saved from the Compile menu, and this enables the line structure to be restored very 

easily when it is loaded into the Turtle Run-Time Standalone System, which is designed 

to run compiled PCode directly.  In addition to these individual line length codes, three 

other numeric codes are stored within each PCode file at the very beginning, 

representing in turn the total number of compiled code lines, the index of the code line 

from which execution is to start, and the number of global variables – these too are 

needed to facilitate the standalone execution of the compiled PCode. 

The organisation of PCode into code lines naturally suggests their use for 

determining the sequencing and flow of control when the compiled code is executed, 

though this involves some departure from the behaviour of a typical real-life processor 

(whose code locations, jumps and branches are all likely to be specified by absolute or 

relative memory addresses).  It also brings some inefficiency, because the compiled 

PCode has to be set up in a two-dimensional array, with consequent processing and 

space overheads.  Conceptually, however, the departure is not huge, because it is 

obvious that the code line organisation can easily be translated into a linear form, and 

the sequencing of control flow along each code line and then from one code line to the 

next is closely analogous to the familiar process of following the text of a book. 
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5.3.2 The Conditional “if … then” 

To compile “if … then” structures within this context, we need one PCode instruction 

that will jump to the beginning of a specified code line unconditionally, and another that 

will branch conditionally, depending on the evaluation of some condition.  For 

simplicity, this condition is always that the value on top of the Program Stack is 0, i.e. 

“false”, so the branch is followed if, and only if, the previously tested condition is not 

satisfied:  (The “HALT” instruction is also included here for completeness.) 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

jump to code line JUMP 48 $30 

if not, branch to code line IFNO 49 $31 

halt execution HALT 56 $38 

To see how all this fits together, consider the following simple program and its 

compiled PCode equivalent (in which the code lines are numbered): 

PROGRAM randblots;         

BEGIN         

 randcol(2); 1. LDIN 2  RNDC 

 if turtc=1 then 2. LDVG 5  LDIN 1  EQUL  IFNO 5 

  blot(300) 3. LDIN 300  BLOT 

 else 4. JUMP 7 

  begin         

   circle(300); 5. LDIN 300  CIRC 

   blot(200) 6. LDIN 200  BLOT 

  end;         

 colour(red); 7. LDIN 255  COLR 

 blot(100) 8. LDIN 100  BLOT 

END. 9. HALT 

The crucial code line here is the second, where the conditional test is performed.  First 

the current value of “turtc” is pushed onto the Stack (“LDVG 5”), then the integer 1 

(“LDIN 1”).  The command “EQUL” then tests the top two Stack values for equality, 

leaving a “true” result (i.e. −1) in their place if they are indeed equal, and a “false” result 

(i.e. 0) if they are different.  If the result was “true”, then the following command 
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“IFNO 5” is simply ignored, and processing continues through code line 3, before 

meeting the unconditional “JUMP 7” command at line 4, which jumps over code lines 5 

and 6 directly to 7.  If on the other hand the result was “false”, then “IFNO 5” branches 

the processing to code line 5 and continues from there.  In either case, the program halts 

at code line 9. 

5.3.3 The Iterative “repeat … until” 

The “repeat … until” structure requires only a single conditional backward branch, and 

so can be straightforwardly compiled using the IFNO instruction; for example: 

PROGRAM concentric;         

VAR radius: integer;         

BEGIN         

 radius:=500; 1. LDIN 500  STVG 6 

 repeat         

  randcol(8); 2. LDIN 8  RNDC 

  blot(radius) 3. LDVG 6  BLOT 

  radius:=radius-12 4. LDVG 6  LDIN 12  SUBT  STVG 
6 

 until radius<20 5. LDVG 6  LDIN 20  LESS  IFNO 
2 

END. 6. HALT 

Here code line 5 makes the test for “radius<20” – if this is false, then processing 

branches back to code line 2, repeating the loop again. 

5.3.4 The Counting Loop “for … do” 

The “for … do” loop (or “for … downto” if the counting is downwards), like 

“if … then”, involves one jump and one conditional branch, though it is significantly 

more complex because of the handling of the loop variable.  Here is the complete 

“forloops” illustrative program together with its compilation: 
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PROGRAM forloops;         

VAR count: integer;         

BEGIN 1. LDIN 1 

 for count:=1 to 200 do 2. STVG 6  LDIN 200 

  begin 3. LDVG 6  MREQ  IFNO 11 

   forward(count/3); 4. LDVG 6  LDIN 3  DIV  FWRD 

   right(5); 5. LDIN 5  RGHT 

   colour(red); 6. LDIN 255  COLR 

   blot(200); 7. LDIN 200  BLOT 

   colour(black); 8. LDIN 0  COLR 

   circle(200) 9. LDIN 200  CIRC 

  end 10. LDVG 6  LDIN 1  PLUS  JUMP 2 

END. 11. HALT 

The program starts by loading 1 onto the Stack, and at code line 2 this value is moved 

into the variable “count” and replaced on the Stack by the loop termination value of 

200.  Now the variable is reloaded onto the Stack in order to compare it against that 

200,38 with the operator “MREQ” leaving the result “true” (i.e. −1) on the Stack if and 

only if 200 is more than, or equal to, the variable’s current value.  Hence if the result is 

“false” (i.e. 0), this implies that “count” has reached a value greater than 200, and hence 

that the loop should terminate, which is achieved by the “IFNO 11” command in code 

line 3 which branches to the “HALT” at code line 11.  (This structure ensures that 

counting loops within Turtle conform to the Pascal standard in not operating at all if the 

initial value of the loop variable is already beyond the termination value.)  The body of 

the loop consists of code lines 4 to 9; then line 10 pushes the loop variable “count” back 

onto the Stack, increments it by 1 (leaving the incremented value on the Stack), and 

unconditionally jumps back to code line 2, where the new value gets stored and then 

tested, continuing on to the next iteration of the loop. 

                                                

38 It may seem wasteful to load the “count” value onto the Stack, then save it to the variable, only 

to reload it again after the termination value.  The explanation for this will become clear shortly, when 

we see future iterations of the loop (via the “JUMP” command in code line 10) making use of the very 

same commands, with the important exception of the preliminary loading of the initial value. 
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Chapter 6   Turtle Machine Procedures 

6.1 Procedure Calls, and the Return Stack 

One of the most fundamental characteristics of procedures, which helps to make them so 

valuable in modular programming, is that they can be “called” from many different 

locations within the program code, without disrupting the local flow of control.  A 

procedure acts as a self-contained unit, running its course and then immediately 

returning control to the location from which it was called, which can vary from occasion 

to occasion.  Hence the implementation of procedures within PCode requires a form of 

flow management more flexible than the fixed jumps and branches discussed in the 

previous chapter.  To cope with the potential flexibility of calling locations, the PCode 

must be able to save the appropriate return location when each procedure is called, and 

to jump back to it when the procedure terminates.  A further complication is that 

procedures can be nested or recursive, with one procedure calling another, and that yet 

another, and so on without theoretical limit;  thus numerous procedures, or instances of 

a single procedure, can all be active simultaneously.  This in turn implies that the 

sequence of pending return locations – corresponding to the hierarchy of procedures 

currently in progress – cannot be stored in fixed addresses, but must be stored in a stack 

structure (last-in-first-out, since the last procedure to start is always the first to finish).  

The implementation of procedures therefore requires that the Turtle Machine should 

incorporate a Procedure Return Stack (or “Return Stack” for short). 

Operation of the Procedure Return Stack clearly requires (at least) two PCode 

commands – one when each procedure (or, more accurately, procedure instance) is 

called, and one when it terminates.  The command that calls a procedure must perform 

two distinct functions: transferring control to the code line corresponding to the start of 

the procedure’s body, and pushing the appropriate return location (i.e. the code line 

from which the procedure was called) onto the Procedure Return Stack.  The command 

that terminates the procedure should then pop this same return location from the Return 

Stack, and transfer control accordingly back to the (end of the) code line from which the 

procedure was called.  These two commands are as follows: 
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Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

call procedure PROC 50 $32 

end procedure ENDP 51 $33 

6.2 Local Variable Storage, the Heap Top Pointer, 
and Procedure Heap Pointers 

§5.2 above explained how global variables are stored at the bottom of the Heap, and 

accessed (through the instructions “LDVG” and “STVG”) by means of an index number 

that gives their “address” within the Heap.  Local variables are also stored in the Heap, 

above the globals, but what makes their processing more complicated is that they do not 

reside there permanently, but are created and destroyed in turn as the procedure instance 

to which they belong first starts and then terminates. 

The basic principle for referencing local variables is quite similar to that for globals, 

in that each variable has an index number which indicates its relative address within the 

appropriate area of the Heap.  The major difference is that this area is not fixed, but 

determined dynamically when the procedure concerned begins.  To achieve this, the 

system continuously maintains a “Heap Top Pointer” which keeps track of the top of the 

Heap – i.e. the top limit of that part of the Heap being used for active variable storage.  

Then whenever a procedure is called, the system takes note of the current value of this 

Heap Top Pointer, and stores it in association with that procedure;   this storage address 

is called the “Procedure Heap Pointer” (or “Procedure Heap (Base) Pointer”) for the 

procedure concerned.39  The local variables of the new procedure instance are then 

stored immediately above the “Heap Base” address indicated by its Procedure Heap 

Pointer, in the order of their index codes (which correspond to the order of their 

                                                

39 Hence a program that contains three procedures will involve three Procedure Heap Pointers.  It 

is not possible to make do with a single Procedure Heap Pointer, dynamically adjusted to whichever is 

the “current” procedure, because two (or more) procedures can be nested, in which case when the 

“inner” procedure is running, the local variables of both must be simultaneously accessible. 
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declaration within the procedure).  The two instructions used to load these local 

variables onto the Program Stack, and to store them from the Program Stack, are as 

follows:40 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

load variable (or value parameter) LDVV 18 $12 

store variable (or value parameter) STVV 34 $22 

Suppose, for example, that a program has the five procedures “proc1” to “proc5”, 

of which the first is called by the third, which is in turn called by the fifth.41  Suppose 

also that the first procedure “proc1”, currently running, has three local variables named 

“one”, “two”, and “three”.  Then assuming that the only other currently active 

procedures are “proc5” and “proc3”, the context in which “LDVV” and “STVV” 

reference these variables can be pictured as shown in Figure 11 below.  To load the 

second local variable of proc1 (i.e. “two”) onto the Program Stack, the appropriate 

command is “LDVV 1 2” (where “1” indicates the first procedure in the program, and 

“2” the second local variable of that procedure).  To identify the required address on the 

Heap, we simply take the Procedure Heap Pointer for the procedure in question (i.e. 

Procedure Heap Pointer 1), and add the index of the particular variable (i.e. 2).  As 

Figure 11 shows, this indeed generates the correct address, and the same applies to the 

corresponding inverse command “STVV 1 2”.42 

                                                

40 In these mnemonics, the first “V” stands for “variable”, and the second for “value”, because 

these are the commands pertaining to local variables and value parameters of procedures.  Reference 

parameters need different commands, whose mnemonics are “LDVR” and “STVR” – see §6.4.2 below. 

41 In Turtle Graphics Pascal, the called procedure must precede the calling procedure, except 

when two procedures are nested, in which case mutual references are possible, cf. note 44 in §6.3 

below. 

42 This handling of local variables can be seen as a natural extension of the method for global 

variables explained in §5.2.  In effect, all global variables are indexed relative to a single Program Heap 

Pointer which points just below the entire Heap, whereas local variables are indexed relative to a 

Procedure Heap Pointer which is specific to the particular procedure within which they occur. 
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   Heap 

Heap Top Pointer  (index=3) three 

  (index=2) two 

  (index=1) one 

Procedure Heap Pointer 1 
(points to “Heap Base” address 
for  first procedure in program) 

  
<local variables of proc3> 

Procedure Heap Pointer 3 
(points to “Heap Base” address 
for third procedure in program) 

  

<local variables of proc5>  

Procedure Heap Pointer 5   <global variables of the program> 

 turtc 

 turtt 

 turtd 

 turty 

Note that the “Heap Base” for 
each procedure is the last Heap 
address before the relevant new 
storage area begins.  Hence in 
this example, Procedure Heap 
Pointer 1 points to the last local 
variable address of proc3.  turtx 

(Program Heap Pointer)    

Figure 11:  Illustrative Heap structure while three procedures are active 

6.3 Claiming and Releasing Heap Space;  the Heap 
Control Stack 

We must now deal with the details of how the Heap reference mechanism outlined 

above is to be maintained while a program is running.  Clearly at least two more PCode 

instructions are needed, one (“HPCL”) to “claim” space on the Heap for the local 



 

 

58 

variables of each new procedure,43 and another (“HPRE”) to “release” that space once 

the procedure has terminated: 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

claim space on Heap HPCL 52 $34 

release space on Heap HPRE 53 $35 

The intended behaviour of “HPCL” and “HPRE” can be deduced if we compare the 

situation before, and after, the first procedure call made within the hypothetical five-

procedure program described in §6.2 above: 

 Situation prior to initial call of proc5: 

Heap Top Pointer  
<global variables> 

 Situation following call of proc5: 

Heap Top Pointer  
<local variables of proc5>  

Procedure Heap Pointer 5  
<global variables> 

Figure 12:  Top of Heap before, and after, a procedure call 

Moving from the first situation to the second (i.e. claiming Heap space for local 

variables) is straightforward – when the procedure starts, its Procedure Heap (Base) 

Pointer should be given the current value of the Heap Top Pointer, then the Heap Top 

Pointer itself should be incremented by the number of local variables in the procedure.  

                                                

43 Strictly, procedure instance, because in a recursive program the same procedure can have many 

instances, each with its own local variables.  For simplicity I shall here usually refer simply to 

“procedures”, but take for granted that procedure instances are understood where appropriate. 
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The inverse operation, releasing the claimed Heap space when the procedure terminates, 

might seem to be equally straightforward, simply requiring that the Heap Top Pointer be 

reduced by the same amount that it was previously incremented.  However this crude 

method will fail to restore the Procedure Heap Pointer also to its own previous value, 

which though unproblematic if the just-terminated procedure is no longer operative, is 

disastrous if another instance of that procedure is still active (a common situation if the 

procedure is recursive).  The obvious refinement of this crude method would be to 

decrement the Procedure Heap (Base) Pointer also, by the same amount as the Heap 

Top Pointer, and this will indeed work if the only recursion in the program involves 

single procedures that call themselves.  However a Turtle program can contain two 

procedures that are mutually recursive (as long as one is a sub-procedure of the 

other),44 and in such a case, maintenance of the Heap structure through the possibly 

alternating recursive calls requires a far more robust approach. 

The upshot of all this is that when a procedure is called and its Procedure Heap 

Pointer is updated accordingly, the previous value of this pointer must be saved, to be 

restored when the current instance of the procedure terminates.  Since there is no limit 

in principle to the depth of recursion, and hence to how many such previous values may 

be involved, the most efficient way of storing them is in a stack structure.  Rather than 

have a separate stack for each procedure, the most elegant way of achieving this is to 

maintain a single “Heap Control Stack”, of which the Heap Top Pointer is the topmost 

value.  Then the required result can be achieved by specifying the behaviour of “HPCL” 

and “HPRE” as follows: 

HPCL: First, exchange the value currently on top of the Heap Control Stack – 

i.e. the Heap Top Pointer – with the Procedure Heap Pointer for the 

                                                

44 In standard Pascal, two procedures can be defined as mutually recursive using the forward 

directive, but this is not provided here because “forward” has a very different traditional meaning 

within Turtle Graphics.  It would be possible to define an alternative directive (the word “deferred” 

might be appropriate), but since simple mutual recursion can already be achieved in Turtle by nesting 

the procedures, this complication (and the inevitable inconsistency with Pascal as implemented within 

Delphi and other systems) seems best avoided. 
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procedure concerned (this both sets the Procedure Heap Pointer 

appropriately, and also saves its previous value on the Heap Control 

Stack).  Then push onto the Heap Control Stack the calculated new value 

for the Heap Top Pointer (which is equal to the old value plus the number 

of local variables in the procedure). 

HPRE: Remove the top element of the Heap Control Stack (i.e. the Heap Top 

Pointer).  Then exchange the new top element with the Procedure Heap 

Pointer for the procedure concerned (this restores the previously saved 

values of both the Heap Top Pointer and the Procedure Heap Pointer). 

It should be clear from these descriptions that they are indeed inverse operations – 

“HPRE”, thus defined, restores exactly the Heap situation prior to the corresponding 

“HPCL”, and because all the relevant values are saved on the Heap Control Stack, this 

will remain true no matter how many recursive or other procedure calls are executed. 

6.4 Dealing with Parameters 

Pascal procedures can have two different types of parameter:  those that are “called by 

value”, and those that are “called by reference” (or “value parameters” and “reference 

parameters” for short).  The syntactic difference between the two is minimal, in that the 

latter are simply prefixed by the keyword “VAR” (hence the informal term “VAR 

parameters”).  But the two need to be handled by quite different mechanisms. 

6.4.1 Value Parameters 

Value parameters behave essentially as ordinary local variables, except that their initial 

value on entry to the procedure is set to the value of the corresponding actual 

parameter.  (Turtle initialises other local variables, and all global variables, to zero – see 

note 46 in §6.6 below)  So the only further issue that needs to be discussed here is how 

those initial values get passed into the procedure. 
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Given the structure of the virtual Turtle Machine, the obvious and natural way to 

pass parameters is via the Program Stack (this also avoids any need to limit artificially 

the number of parameters that can be passed, which would apply if a fixed number of 

registers were to be used).  So the PCode sequence prior to calling a procedure with one 

parameter will be exactly as when calling a Turtle Graphics command with one 

parameter (cf. §5.2 above), namely, pushing the actual parameter value onto the 

Program Stack;  then the procedure is called by transferring control to the appropriate 

codeline with “PROC”.  The same mechanism applies if there are more parameters, with 

these being pushed onto the Stack in their natural syntactic order (i.e. the first parameter 

gets pushed onto the Stack first).  To match up with this, the PCode within the body of 

the procedure will start with one “STVV” command for each value parameter, except 

that now they must be dealt with in reverse order (because when the “PROC” command 

is performed, the last parameter will be at the top of the Stack – see §6.6 below for a 

detailed example of this last-in-first-out unpacking). 

6.4.2 Reference Parameters 

Reference parameters are significantly different in behaviour from value parameters, in 

that instead of specifying a value to be given to the corresponding formal parameter 

within the procedure, they specify a variable for which the formal parameter is to act as 

an “alias” within the procedure.  Thus the actual parameter to the procedure must be a 

variable, and it is in effect the address of this variable that gets passed into the 

procedure, rather than its value. 

It follows that handling reference parameters requires a completely different set of 

PCode instructions from those that apply to value parameters.  The two most basic are: 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

load reference parameter LDVR 19 $13 

store reference parameter STVR 35 $23 
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which within the procedure do more or less the same job for reference parameters that 

“LDVV” and “STVV” do for value parameters:  that is, they provide access to the 

relevant formal parameter within the procedure’s code lines, enabling that parameter to 

be loaded onto the Program Stack or saved from the Program Stack much like any 

normal variable.  Obviously the method by which “LDVR” and “STVR” operate, 

however, is very different, because in order to identify which address on the Heap 

should be loaded or stored (respectively), a process of indirection needs to take place, 

whereby the actual parameter’s storage address is looked up in a “register”, where it will 

be indexed under the formal parameter which is serving as its alias.  This register cannot 

be “hard wired”, because one and the same procedure could be called from many 

different places in the program, with a wide variety of different variables providing the 

actual input parameter (implying that the same formal parameter would be acting as an 

“alias” for different actual variables on these different occasions).  So the obvious way 

of dealing with this is to assign a local variable storage address for each reference 

parameter, just as for value parameters, except that when these addresses are accessed 

using “LDVR” and “STVR” (as opposed to “LDVV” and “STVV”), they will be 

interpreted as registers containing indirection addresses, rather than as storage locations 

for variables themselves.  So if, in the situation we were considering earlier (at page 57), 

parameters one and three of the first procedure were reference rather than value 

parameters, then the top of the Heap would be as follows: 

   Heap 

Heap Top Pointer  (index=3) <address of variable given as actual 
parameter to formal parameter three> 

  (index=2) two 

  (index=1) <address of variable given as actual 
parameter to formal parameter one> 

Procedure Heap Pointer 1 
(points to “Heap Base” address 
for  first procedure in program) 

  
 

Figure 13:  Top of Heap where procedure involves reference parameters 
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Then “LDVR 1 3”, for example, will work by first identifying the required indirection 

register on the Heap, calculating this by taking the Procedure Heap Pointer for the 

procedure in question (i.e. Procedure Heap Pointer 1), and adding the index of the 

particular variable (i.e. 3).  But then instead of simply loading onto the Program Stack 

whatever value – 5, say – it finds in that address (as would happen in the case of 

“LDVV 1 3”), it instead proceeds to interpret this value as itself an indirected Heap 

address, and accordingly loads the value which is to be found in the corresponding Heap 

location – in this case, at address 5 (which is the address of the turtc value, so this is the 

situation that will arise where turtc is the actual parameter corresponding to the formal 

parameter “three”).  “STVR” acts very much like “LDVR”, except that it stores into the 

indirected Heap address rather than loading from it. 

The other PCode instructions that handle reference parameters are used for setting 

up the appropriate aliases when a relevant procedure is called: 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

load address of global variable LDAG 20 $14 

load address of local variable (or value param) LDAV 21 $15 

load indirected address of reference parameter LDAR 22 $16 

store indirected address of reference parameter STAR 38 $26 

The first three of these are used to load the Heap address of the relevant actual 

parameter variable onto the Program Stack, for transfer into the procedure body.  Three 

instructions are needed because a procedure call can occur not only from the main 

program but also from another procedure, one of whose own variables or parameters 

might therefore be “aliased” by the reference parameter within the called procedure.  

Hence the actual input parameter could be any one of a global variable (“LDAG”),45 a 

local variable or value parameter of the calling procedure (“LDAV”), or a reference 

parameter of the calling procedure (“LDAR”).  Whichever of these is involved, 

                                                

45 “LDAG” is in fact equivalent to “LDIN”, since the Heap address of the nth global variable is 

just n.  But for the sake of clarity, the two uses are differentiated by using separate instructions. 
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however, the same instruction (“STAR”) is used within the procedure code to store the 

actual parameter’s Heap address in the procedure’s corresponding formal parameter 

“indirection register”. 

6.5 The Procedure Register Stack 

We saw earlier (in §2.3) that the Turtle system incorporates a “trace” facility which 

displays each PCode command as it is executed, together with relevant contextual 

information including the numeric index of whichever procedure (if any) is running at 

any particular time, and how many procedures are active.  However the instructions 

introduced so far are not designed to keep track of this information, and it cannot be 

deduced by simply counting how many procedure calls have been made and recording 

the last such call.  For as the middle line of the following sequence illustrates, the current 

procedure is not always the last to have started, nor the next to finish: 

      proc2 starts 
        proc1 starts and finishes 
      (proc2 running) 
        proc1 starts and finishes 
      proc2 finishes 

The simplest solution to this bookkeeping problem is to maintain yet another stack, the 

“Procedure Register Stack”, whose topmost value (the “Procedure Register”) is set 

according to the procedure which is currently running, and whose height indicates how 

many procedures are active.  The operation of this stack is very straightforward:  when a 

procedure begins, its number is pushed onto the stack, and whenever a procedure ends, 

the top value is pulled from the stack, using the following two instructions: 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

push procedure index onto Procedure Register Stack PSPR 54 $36 

pull procedure index from Procedure Register Stack PLPR 55 $37 
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6.6 Putting Procedures Together 

We can now see how all this fits together in compiling a program with a fairly complex 

procedure interface.  This example produces the effect of a ball bouncing back and forth 

horizontally, while performing a slow “random walk” vertically: 

  PROGRAM randomdrift;  

  VAR bgcol,xpos,xvel,ypos: integer;  
  

   PROCEDURE doball(size,bgc,col: integer;  
VAR xp,xv,yp: integer); 1.  PSPR 1   HPCL 1 7 

   VAR ymove: integer; 2.  ZERO 1 7   STAR 1 6   STAR 1 5   STAR 1 4  … 

   BEGIN …  STVV 1 3   STVV 1 2   STVV 1 1 

    randcol(7); 3.  LDIN 7   RNDC 

    ymove := turtc−4; 4.  LDVG 5   LDIN 4   SUBT   STVV 1 7 

    setxy(xp,yp); 5.  LDVR 1 4   LDVR 1 6   TOXY 

    colour(bgc); 6.  LDVV 1 2   COLR 

    blot(size); 7.  LDVV 1 1   BLOT 

    xp := xp+xv; 8.  LDVR 1 4   LDVR 1 5   PLUS   STVR 1 4 

    yp := yp+ymove; 9.  LDVR 1 6   LDVV 1 7   PLUS   STVR 1 6 

    setxy(xp,yp); 10.  LDVR 1 4   LDVR 1 6   TOXY 

    colour(col); 11.  LDVV 1 3   COLR 

    blot(size); 12.  LDVV 1 1   BLOT 

    update; 13.  UDAT 

    noupdate; 14.  NDAT 

    if (xp<size) or (xp>1000−size) then 15.  LDVR 1 4   LDVV 1 1   LESS   LDVR 1 4   LDIN 1000  …

 … LDVV 1 1   SUBT   MORE   OR   IFNO 17 

      xv := −xv 16.  LDVR 1 5   NEG   STVR 1 5 

   END;  {procedure doball} 17.  HPRE 1   PLPR   ENDP 
  

  BEGIN  {main program}  

   bgcol := $5000; 18.  LDIN 20480   STVG 6 

   blank(bgcol); 19.  LDVG 6   BLNK 

   xpos := 30; 20.  LDIN 30   STVG 7 

   xvel := 1; 21.  LDIN 1   STVG 8 

   ypos := 500; 22.  LDIN 500   STVG 9 

   repeat  

     doball(30,bgcol,yellow,xpos,xvel,ypos) 23.  LDIN 30   LDVG 6   LDIN 65535   LDAG 7  … 

 …  LDAG 8   LDAG 9   PROC 1 

   until (ypos<0) or (ypos>1000) 24.  LDVG 9   LDIN 0   LESS   LDVG 9 … 

 …  LDIN 1000   MORE   OR   IFNO 23 

  END.  {main program} 25.  HALT 
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This program is adapted from one of the built-in illustrative programs, which uses 

reference parameters to enable a single “doball” procedure to handle the motion of two 

(or more) balls that are bouncing around the screen, each with its own stored set of 

position and velocity x- and y-components.  Only one ball is included here, but because 

the procedure is designed in this way, it would be easy to extend the program to include 

more balls, perhaps to make a simple betting game (“Which ball will reach the top or 

bottom of the Canvas first?”).  Note also the “ymove” local variable, which is set 

randomly (via “randcol”) to a value between plus and minus 3 to change the ball’s 

y-coordinate accordingly, thus generating the ball’s vertical random walk. 

When run, the PCode starts executing at code line 18, which sets the global variable 

“bgcol” to an appropriate background colour – here the hexadecimal colour code 

$005000 (20480 in decimal) specifies $50/$FF (80/255 in decimal) intensity of green, 

with zero of blue and red (see §3.4.2).  Then code line 19 uses this global variable to 

“blank” out the Canvas accordingly, after which lines 20 to 22 set up the starting values 

of the other three global variables (§5.2). 

The body of the “repeat” loop is just code line 23, which executes the procedure 

call to “doball”.  Code line 24 then performs a conditional branch back to line 23, unless 

the condition “(ypos<0) or (ypos>1000)” evaluates as true (the mechanism by which a 

repeat loop achieves the required conditional branching is explained in §5.3.3).  Most of 

the PCode in line 24 is devoted to evaluating the relevant condition, operating in 

standard reverse Polish fashion using the Program Stack (§§5.1-2). 

Coming back now to code line 23, this simply loads the various actual procedure 

parameters, in order, onto the Program Stack, before performing “PROC 1” to call the 

procedure which starts at code line 1.  The first and third actual parameters are 

numerical constants (yellow being $FFFF in hexadecimal, 65535 in decimal);  so these 

are loaded onto the Stack using “LDIN”.  The second is a global variable serving as a 

value parameter to the procedure, so its current value is also simply loaded onto the 

Stack using “LDVG”.  But the last three actual parameters, by contrast, are global 

variables corresponding to reference (“VAR”) parameters within the procedure, so it is 

not their values that get loaded onto the Stack, but rather, their Heap addresses:  this 

requires use of the instruction “LDAG” rather than “LDVG”.  Once all these Stack 
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operations have been completed, the “PROC 1” command at the end of code line 23 

transfers control to line 1, but before doing so (as explained in §6.1), it first saves the 

appropriate return location (in this case, 23) on the Procedure Return Stack, so that 

when the procedure terminates with “ENDP”, the Turtle Machine will have a record of 

where execution should continue (in this case, from the end of code line 23, hence code 

line 24 will be the next to be executed after the procedure terminates). 

By the time procedure “doball” is called, the condition of the Stack is as follows: 

Stack position 
(top = 1) 

Item on the 
Program Stack 

Corresponding formal 
parameter within procedure 

1. Absolute Heap address of global 
variable “ypos” (= 9) 

yp (reference parameter) 

2. Absolute Heap address of global 
variable “xvel” (= 8) 

xv (reference parameter) 

3. Absolute Heap address of global 
variable “xpos” (= 7) 

xp (reference parameter) 

4. Integer 65535 (or $FFFF) – the 
colour code of yellow 

col (value parameter) 

5. Current value of global variable 
“bgcol” (= 20480 or $5000) 

bgc (value parameter) 

6. Integer 30 size (value parameter) 

 

Note that all six items on the Stack are integers, but the top three are destined to be 

used as Heap addresses rather than as integer values in their own right.  To see how this 

happens, we must now turn our attention to the code lines of the procedure itself. 

The first thing that happens after procedure “doball” is entered (at code line 1) is 

that “PSPR 1” pushes the value of 1 onto the Procedure Register Stack, the 1 here 

signifying that the first procedure in the program is now “active”.  Then “HPCL 1 7” 

claims space on the Heap for the seven local “variables” of this first procedure –  these 

are the six formal parameters in the table above, plus the one genuine local variable 

“ymove”.  “HPCL 1 7” does this by adjusting the various Heap pointers as described in 
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§6.3 above;  this ensures in particular that Procedure Heap Pointer 1 is set up to point 

just below the seven Heap locations that “doball” needs in order to hold (or, in the case 

of reference parameters, to indirect) its seven local variables. 

With the necessary Heap locations now claimed, code line 2 performs the task of 

“unpacking” the Program Stack, so that all seven local variables are appropriately set 

up.  As already mentioned in §6.4.1, this unpacking must take place in reverse order 

because of the last-in-first-out stack structure.  For neatness the same reverse ordering is 

extended to genuine local variables, although these do not require any use of the Stack – 

hence the first operation in code line 2 is the one that deals with “ymove”, the seventh 

local “variable”, whose initialisation to 0 involves a new PCode instruction:46 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

zero local variable ZERO 39 $27 

Thus “ZERO 1 7” sets the seventh local variable of the first procedure to 0, without 

requiring any values to be passed via the Program Stack.  This command is not strictly 

necessary for the operation of the Turtle Machine, since a sequence such as “LDIN 0  

STVV 1 7” would have a similar result, but use of “ZERO” significantly shortens the 

initialisation sequence for procedures that have genuine local variables. 

The rest of code line 2 involves “unpacking” from the Stack either variable 

addresses (in the case of the three reference parameters) or integer values (in the case of 

the three value parameters).  Variable addresses are unpacked using the PCode 

instruction “STAR” (cf. §6.4.2), while integer values are unpacked using “STVV”.  By 

this process the six items from the Program Stack shown in the table above are all stored 

appropriately for the procedure to make use of them. 

                                                

46 The Turtle Machine initialises all variables to 0, except for the five predefined globals.  Here it 

differs from Delphi, which initialises global variables to 0 but leaves local variables initially undefined.  

Although students should be taught that it is good practice to initialise all variables explicitly, the 

confusion that can result from undefined variables (and resulting inconsistent program behaviour) 

seems to make automatic initialisation most appropriate in a system designed for novice programmers. 
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The main body of the procedure can now get under way, working through the 

following sequence (the numbers at the left refer to code lines of the compiled PCode): 

3-4:   “ymove” is set to a random value between −3 and +3 

5-7  a background-coloured blot is drawn using the x- and y-coordinates 

“xp” and “yp” (which are aliases for the globals “xpos” and “ypos”) 

8-9  “xp” and “yp” are adjusted by the required horizontal (“xv”) and vertical 

(“ymove”) movement, but since “xp” and “yp” are aliases for “xpos” and 

“ypos”, it is really these two global variables that are changed. 

10-12 a yellow blot is drawn using the new x- and y-coordinates “xp” and “yp” 

(which, yet again, are aliases for “xpos” and “ypos”) 

13-14 screen updating takes place only here in the procedure, aiming to give an 

illusion of smooth motion rather than flashing as the blots are drawn 

15-16 a test is performed to see whether “xp” (alias for “xpos”) is within a ball’s 

radius of the side of the Canvas;  if so, then “xv” (alias for “xvel”) is 

inverted so that the ball will move back in the opposite direction 

Code line 17, which ends the procedure, contains three commands.  First, “HPRE 1” 

releases the Heap space previously claimed by “HPCL 1 7” (as explained in §6.3);  then 

“PLPR” pulls the procedure index from the Procedure Register Stack (§6.5);  finally 

“ENDP” returns control to the main program, pulling the code line from which the 

procedure was called (here, 23) from the Procedure Return Stack.  Hence execution 

then continues from code line 24, where the test is made to determine whether the 

“repeat” loop should continue.  Eventually “ypos” will randomly drift to be less than 0 

or more than 1000, at which point the “IFNO” branch back to line 23 will cease to 

operate, and the program will terminate when it reaches the “HALT” instruction at code 

line 25. 
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6.6.1 Note on the Trace Facility 

In closing this discussion, recall (from §2.3 and §6.5) that Turtle contains a trace facility 

which can display in detail the execution steps of any program, including all transfer of 

data via the Stack.  This trace can be used with the program above to inspect the 

mechanisms described, but before doing so, it is helpful to modify the “until” condition 

to “until turtx>=33”, to restrict the repeat loop to three procedure calls.  Each 

procedure call involves around 50 program “cycles” – i.e. individual PCode commands – 

so allowing the unmodified program to run will quickly build the trace display to an 

unmanageable length (with very evident effects on program speed). 

6.7 Stack Variations on the Turtle Machine 

As described so far in this chapter and the last, the Turtle Machine involves no fewer 

than four stack structures: 

• The main Program Stack (§5.1), used for holding command parameters, 

calculating intermediate values, and parameter passing; 

• The Procedure Return Stack (§6.1), used for storing return code line locations 

for program continuation after each procedure terminates; 

• The Heap Control Stack (§6.3), used for managing Heap pointers that indicate 

where each procedure’s dynamic storage is to be found; 

• The Procedure Register Stack (§6.5), used to keep track of the active 

procedures, in order to service the trace display facility. 

These stacks are made independent in the default version of the software, to enable each 

mechanism to be introduced separately in an educational context, but only the first of 

them is genuinely necessary, and the Compile menu provides three options which 

respectively enable each of the others to be dispensed with (involving some new PCode 

instructions).  These options are intended to facilitate teaching of the concept of a stack 

frame, since they illustrate how a variety of data relevant to a procedure call (including 

not only parameters, but also return location and heap pointers) can all be combined into 

a “frame” on the Stack, and viewed as such through the trace display facility, which 
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shows the contents of the top three Program Stack locations at every “cycle” of the 

program.47 

To explain the differences between the options, we can see how they affect the 

compilation of a short program with one (recursive) procedure.  The procedure draws a 

coloured blot, then moves forward (hence the name “bf”) and turns before calling itself 

with an incremented parameter.  The visual effect is of nine “pillars”: 

PROGRAM pillars;          

          

  PROCEDURE bf(r: integer); 1. PSPR 1  HPCL 1 1 

  BEGIN 2. STVV 1 1 

    if r<350 then 3. LDVV 1 1  LDIN 350  LESS  IFNO 9

      begin          

        randcol(6); 4. LDIN 6  RNDC 

        blot(r-5); 5. LDVV 1 1  LDIN 5  SUBT  BLOT 

        forward(r*2); 6. LDVV 1 1  LDIN 2  MULT  FWRD 

        right(40); 7. LDIN 40  RGHT 

        bf(r+1) 8. LDVV 1 1  LDIN 1  PLUS  PROC 1 

      end          

  END; 9. HPRE 1  PLPR  ENDP 
          

BEGIN          

  blank(black); 10. LDIN 0  BLNK 

  penup; 11. PNUP 

  movexy(-140,40); 12. LDIN 140  NEG  LDIN 40  MVXY 

  bf(50) 13. LDIN 50  PROC 1 

END. 14. HALT 

In the default situation, shown here, the procedure starts with PSPR + HPCL and ends 

with HPRE + PLPR + ENDP;  the parameter is passed through the Program Stack (at 

code lines 8 and 13), but no other information is passed by that route. 

                                                

47 Note also the option provided through the Compile menu, to display the height of the Stack 

(rather than the contents of the third Stack location) in the last trace column. 
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6.7.1 Doing Without the Procedure Return Stack 

Now suppose that we opt to compile the program without use of the Procedure Return 

Stack;  this means that the procedure “return jump” location must be passed via the 

Program Stack, for which we use the “LDRJ” and “PLRJ” instructions respectively to 

“load” and “pull” it:48 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

load procedure return jump LDRJ 224 $E0 

pull (and make) return jump PLRJ 225 $E1 

Since however the address is intended to remain on the Stack after the parameters have 

been “unpacked”, it is best to load it before the parameters.  This happens twice, once 

when the procedure is called recursively (at code line 8), and once when it is called from 

the main program (at code line 13): 

  PROCEDURE bf(r: integer); 1. PSPR 1  HPCL 1 1 

  BEGIN 2. STVV 1 1 

      . . . . . .  

        bf(r+1) 8. LDRJ  LDVV 1 1  LDIN 1  PLUS  PROC 
1 

      end          

  END; 9. HPRE 1  PLPR  PLRJ 
          

BEGIN          

  . . . . . .  

  bf(50) 13. LDRJ  LDIN 50  PROC 1 

END. 14. HALT 

                                                

48 In the same spirit as note 45 above, it is perhaps worth noting that the “PLRJ” instruction could 

be used to replace “JUMP” if the aim were to minimise the instruction set, since “JUMP 10”, for 

example (which jumps to the beginning of code line 10), is equivalent to “LDIN 9  PLRJ” (which jumps 

to the end of code line 9). 
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The only other change is that the procedure here ends with “PLRJ” rather than “ENDP” 

– procedure termination has to involve a different command if the machine is to continue 

execution from the return location stored on the Program Stack (the effect of “PLRJ”) 

rather than looking for the return location on the Procedure Return Stack.49 

6.7.2 Doing Without the Heap Control Stack 

Managing Heap space without the Heap Control Stack is a relatively complex business, 

requiring that the relevant Heap pointers be passed and calculated on the Program Stack 

rather than being controlled through a specially tailored mechanism.  The Heap Top 

Pointer is retained as a single register (rather than as the top of a stack), and each 

procedure still has its own Procedure Heap Pointer, keeping track of the relevant Heap 

Base address.  But now these must be maintained explicitly, using the instructions 

“LDHT” and “STHT”, which respectively load and store the current Heap Top Pointer, 

and “LDHB” and “STHB”, which load and store the Procedure Heap (Base) Pointer for 

a specified procedure: 

Informal description of 
command behaviour 

Assembler 
mnemonic 

Decimal 
code 

Hex 
code 

load Heap Top Pointer LDHT 226 $E2 

store Heap Top Pointer STHT 227 $E3 

load Heap Base Pointer LDHB 228 $E4 

store Heap Base Pointer STHB 229 $E5 

This Heap maintenance is done as follows:  (Some code line numbers are changed, but 

for convenient comparison, the previous numbering is shown, in brackets.) 

                                                

49 For the sake of simplicity the procedure call still involves “PROC”, which adjusts the Procedure 

Return Stack, so that stack is in fact maintained.  However it is not used – “PLRJ” removes the return 

location from this stack (to prevent overflow) but just discards it, using the Program Stack value 

instead. 
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  PROCEDURE bf(r: integer); 1. PSPR 1  LDHT  STHB 1 
LDHT  LDIN 1  PLUS STHT 

  BEGIN (2) STVV 1 1 

      . . . . . .  

        bf(r+1) (8) LDHB 1 LDHT 
LDVV 1 1  LDIN 1  PLUS  PROC 1 
STHT  STHB 1 

      end          

  END; (9) PLPR  ENDP 
          

BEGIN          

  . . . . . .  

  bf(50) (13) LDHT 
LDIN 50  PROC 1 
STHT 

END. (14) HALT 

At the start of the procedure, “HPCL 1 1” is replaced by a command sequence which 

explicitly sets Procedure Heap Pointer 1 to the current value of the Heap Top Pointer 

(“LDHT STHB 1”), and then adds 1 to the value of the Heap Top Pointer itself 

(“LDHT LDIN 1 PLUS STHT”) – this “claims” space on the Heap for the one local 

variable/parameter “r”.  The process of releasing this space is more complex and must be 

done outside the procedure itself, because it depends on whether the procedure is called 

from a procedure (as at code line “8”) or from the main program (as at code line “13”).  

In the latter case, the only thing needed to release the space is to reset the Heap Top 

Pointer to the value it had prior to the procedure call;  this is easily done by pushing that 

value onto the Program Stack before the procedure is called (the “LDHT” in code line 

“13”), and then pulling it from the Stack to reset the Heap Top Pointer after the 

procedure has terminated (the “STHT” in code line “13”).  In the former case, however, 

where the procedure call is itself within a procedure, it is essential to save and restore 

both the Heap Top Pointer and also the Procedure Heap (Base) Pointer of the calling 

procedure;  hence the sequence “LDHB 1 LDHT ... STHT STHB 1” in code line “8”, 

bracketing the procedure call. 
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The options discussed in these last two sections can be combined, so that both the 

procedure return location and the Heap pointers are handled through the Program Stack 

rather than using Procedure Return and Heap Control Stacks.  In this case the relevant 

lines from the previous example would be modified as follows: 

        bf(r+1) (8) LDHB 1 LDHT 
LDRJ  LDVV 1 1  LDIN 1  PLUS  PROC 1
STHT  STHB 1 

      end          

  END; (9) PLPR  PLRJ 

  . . . . . .  

  bf(50) (13) LDHT 
LDRJ  LDIN 50  PROC 1 
STHT 

The only complication here is that the Heap pointers must be loaded onto the Program 

Stack (using “LDHB” and “LDHT”) before the procedure “return jump” location is 

loaded (with “LDRJ”), enabling this location to be “pulled” at the end of the procedure 

(by “PLRJ”) without affecting the Heap pointers.  

6.7.3 Doing Without the Procedure Register Stack 

Since the Procedure Register, and the stack that maintains it, are used by the Turtle 

Machine only to enable procedures to be “traced”, the “PSPR 1” and “PLPR” 

commands can simply be removed from the compiled PCode without significantly 

affecting it.  When it is then run, the only apparent difference (apart from a very small 

increase in speed) will be within the trace display, where the “Proc” column will 

continuously show “0/0” instead of, for example, “1/1”, “1/2”, “1/3” etc. depending on 

how many copies of the procedure are active. 

 

In Chapter 7, we move on to the Turtle system’s compiler, examining the 

mechanisms that it uses to translate the Pascal source language presented in Chapter 3 

into the Turtle Machine code structures explained in Chapters 5 and 6. 
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Chapter 7   The Turtle Compiler 

Having examined the virtual Turtle Machine, we must now turn to the Turtle compiler, 

whose job is to turn source Pascal code (as described in Chapter 3) into Turtle “machine 

code” or PCode (as described in Chapters 5 and 6).  The compiler involves nearly 2,000 

lines of Delphi Pascal,50 so obviously it would be inappropriate here to attempt to 

consider it all in detail.  Hence this chapter will focus only on the compiler’s overall 

structure and processes, and on points of sufficient generality to be of educational 

interest independently of the specific environment and programming language used.  It 

aims to provide not only an explanation of the compiler’s processes, but also an 

illustration of how the system can provide a vehicle for presenting compiling techniques 

to students in a relatively accessible manner, without any ascent to the level of 

abstraction typically demanded by textbooks on compilation theory. 

7.1 Standard Compilation Subtasks 

Standard accounts of compilation typically divide the process conceptually into some 

combination of the following set of subtasks:51 

(a) Lexical analysis, handled by a “scanner” which decomposes the source text into 

individual lexical units (e.g. treating “>=”, and whole words, as single such units). 

(b) Screening, which refines the output of the lexical analysis by processes such as the 

elimination of units that are not part of the execution code (e.g. separators and 

comments), and distinguishing between source words that are mere identifiers, and 

those that are keywords or reserved words of the language (e.g. “begin”). 

                                                

50 Out of a system total of around 6,500 lines of Delphi Pascal, plus another 1,000 lines or so of 

interface (i.e. Windows “form”) specifications. 

51 See for example Aho and Ullman  [3], ch. 1;  Bornat  [14], ch. 1;  Wilhelm and Maurer  [137], 

ch. 6.  The description here is based mainly on the last of these, which is the most detailed and up-to-

date, incorporating various terminological distinctions (e.g. between a scanner and a screener, deriving 

from DeRemer  [37]) that have become widespread since the earlier books were written. 
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(c) Syntax Analysis, which parses the output of the screener to produce a syntax tree 

for the source program, determining its syntactic structure.  This tree may be stored 

explicitly within the compiler, or it may be an implicit abstraction from the 

compiler’s behaviour as it traverses the source code, processing as it goes. 

(d) Semantic Analysis, “decorating” the syntax tree with semantic information such as 

type assignments, and performing appropriate checks for consistency. 

(e) Machine-Independent Optimisation, aiming to perform transformations on the 

decorated syntax tree to increase the efficiency of the resulting program. 

(f) Address Assignment, the first of the “synthesis” (as opposed to “analysis”) stages 

that take account of the specific machine architecture, here involving such 

considerations as word length and the potential for data packing. 

(g) Code generation, which finally creates the object code for the target machine, 

selecting appropriate command sequences and use of internal registers etc. 

(h) Machine-Dependent Code Improvement, focused mainly on local optimisation 

rather than the sort of global considerations typically involved at stage (e). 

For reasons of efficiency and convenience, however, these processes are not usually 

separated into independent sequential modules, and traditionally a common approach 

has been to aim for a two-pass compiler (e.g. Bornat  [14], p. 17), in which the first 

“pass” through the program performs the bulk of the “analysis” – phases (a) to (d) if not 

(e) also – and then the second “pass” performs the “synthesis” that remains to be done.  

However what mainly drives the separation of the passes here is not so much the 

conceptual distinction between analysis and synthesis, but rather the separation of 

machine-independent from machine-dependent considerations, to avoid the runaway 

complexity that would result from attempting to deal with both of these together where 

they interact, notably in the optimisation stages (e) and (h).  Where no code optimisation 

is required, it is often simplest to perform the synthetic code generation together with 

the analysis, resulting in a single-pass compiler.52 

                                                

52 See for example Wilhelm and Maurer  [137], p. 232.  Even a single-pass compiler is unlikely to 

process the program purely sequentially, since there is often a need for backpatching (e.g. Aho and 

Ullman  [3], p. 9).  Typical examples of such backpatching occur within the Turtle compiler when 

control structures are terminated (described in §7.5 below), and also when a compiling “sub-procedure” 
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7.2 The Structure of the Turtle Compiler 

The Turtle compiler, like the Turtle virtual machine, aims as its first priority for easy 

comprehensibility rather than efficiency, so for example no attempt is made to optimise 

the code at any stage, and all source language constructs are consistently “translated” in 

the same manner (as outlined in Chapters 5 and 6).  Moreover since it handles only 

integer data, there is no need for type checking (cf. §3.1.2 above) or any other kind of 

semantic processing intermediate between syntactic analysis and code synthesis.  All this 

enables code generation to be integrated very easily into the syntax analysis, so that a 

one-pass compiler would be fairly straightforward to implement.  However in order to 

facilitate the creation of lexeme-indexed analysis tables that are transparently accessible 

(see §§7.3-4 below), the Turtle compiler operates in two passes, with the first 

combining lexical analysis and screening (subtasks (a) and (b)),  after which the initial 

analysis tables can be created, while the second pass integrates syntax analysis, address 

assignment, and code generation (subtasks (c), (f) and (g)) in a manner that avoids any 

need for an explicitly stored syntax tree.  Again partly for educational reasons, this 

second pass is itself modularised into three fairly independent levels, each being handled 

by a different mechanism which can be learned and understood separately as 

complementary compiling techniques: 

 Compilation subtask Mechanism involved in subtask 

PASS  1 

    §7.3 

Lexical Analysis 

Screening 

Simple finite state machine (FSM) 

Tokenisation 

PASS 2 

    §7.4 

    §7.5 

    §7.6 

Parsing and Code Generation for:

Program Block Structure 

Control Structures 

Commands and Expressions  

 

Complex FSM plus counter 

Pushdown automaton (PDA) 

Recursive descent 

                                                                                                                                         
makes reference to a (parent) procedure that has not yet itself been compiled.  Grune et al.  [47] point 

out that increased memory capacity has recently led to the development of “broad” compilers, which 

read the entire program and then transform it, removing any need for multiple passes (pp. 26-7). 



 

 

79

7.3 Lexical Analysis and Screening 

The first pass of the compiler involves the lexical analyser (function lexanalyse), which 

works through each line of the source code identifying the lexical items (“lexemes”) it 

contains, and assigning an appropriate lexical type to each such item.  Categorising the 

lexemes in this way greatly facilitates the later processes, by removing numerous 

complications.  For example at this stage the Pascal “keywords” or “reserved words” are 

picked out (since the lexical analyser is integrated with a “screener” cf. §7.1 above), so 

that from now on the compiler, when checking for, say, the keyword “else” to match 

with a previous “if … then”, does not need to look for the four characters “e” “l” “s” 

“e” (with no other contiguous letters or digits etc.), but need only check for a single 

lexeme of type ltElse.  Because the keywords are recognised at the beginning of 

compilation, and henceforth treated as “tokenised” lexemes rather than as strings, they 

cannot be used in any other capacity (e.g. “from” cannot be an “identifier” and hence 

cannot be the name of a variable); indeed it is this fixedness of interpretation that 

characterises a Pascal “reserved word”.53 

Each keyword has its own lexical type;  thus “and” is of type ltAnd, “begin” is of 

type ltBegin and so on through “do”, “downto”, “else”, “end”, “for”, “if”, “mod”, “not”, 

“or”, “procedure”, “program”, “repeat”, “then”, “to”, “until”, “var”, “while”, and “xor”.  

The other lexical types are listed in the following table: 

                                                

53 Although the terms “keyword” and “reserved word” are often (as here) used interchangeably, 

there is a subtle difference between them in the case of a language which prevents certain words from 

being used as identifiers (i.e. they are reserved) but which does not use them itself (so they are not  

strictly “keywords”).  For simplicity the Turtle system reserves only its own keywords, though there 

would be an argument for reserving also such words as “case”, “function” or “while” that are both 

reserved words and keywords within Delphi and other full implementations of Pascal. 
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ltSemicolon ;  ltMinus − (ambiguous)  ltDot . (after final “end”) 

ltComma ,  ltSubt − (binary)  ltInt decimal integer 

ltLbkt (  ltNeg − (unary)  ltHex hexadecimal integer 

ltRbkt )  ltEqual =  ltIdK identifier or keyword 

ltColon :  ltNotEq <>  ltId identifier 

ltAsgn :=  ltLess <  ltNull no type yet assigned 

ltPlus +  ltMore >  ltError illegal character 

ltMult *  ltLessEq <=  

ltDivide /  ltMoreEq >=  
{comments} are completely ignored; 
illegal characters generate an error 

The process that assigns these lexical types is very straightforward, reading through the 

source text one character at a time, and sending each character through a modified finite 

state machine structure which either makes an immediate decision about the lexical type 

(e.g. in the case of semicolons and brackets), or else moves to an appropriate “pending” 

state to await the next character(s) and process accordingly.  When a “<” is 

encountered, for example, the FSM moves to state stLess, in which: 

•  if the next character is either “>” or “=”, it is linked together with the “<” as a 

single lexeme of type ltNotEq (“<>”) or ltLessEq (“<=”) respectively; 

• otherwise, the “<” is recorded as of type ltLess. 

In the former case, the next character to be sent through the FSM will be the one 

following “>” or “=”; in the latter case, the character just tested (as not being either “>” 

or “=”) will itself be resent through the FSM.  But either way, the FSM reverts back to 

the default initial state (stNew) before continuing. 
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As shown on the right here, the lexical 

analysis results can be inspected, after 

compilation has taken place, in the “String” and 

“Type” columns of the “Syntax” table which is 

one of the Visual Compiler displays (introduced 

in §2.3 above).  In this table the types are 

usually shown as the literal expressions 

themselves (e.g. “>=” rather than “ltMoreEq”), 

but where different expressions can be of the 

same type, that type is indicated using a 

standard word such as “identifier” or “integer”. 

Some lexical types involve various complications, for example ltInt and ltHex must 

be sequences of valid decimal or hexadecimal digits, and generate error messages if 

illegal characters appear in the sequence (most other error messages produced by the 

lexical analyser concern characters that are illegal wherever they appear, such as “&”).  

But the most complicated type to deal with is ltIdK, a temporary place-holder (in effect 

filling the gap between pure syntax analysis and screening) which indicates a sequence of 

alphanumeric characters starting with a letter;  when the character sequence is complete, 

it is looked up in the keyword list to establish its nature.  Another place-holder type is 

ltMinus, signifying a “−” character which could be either a unary negative (as in 

“x := −1”) or a binary subtraction (as in “x := y − z”).  This ambiguity, however, is 

resolved not by the lexical analysis, but by the recursive descent phase of the later syntax 

analysis (cf. §7.6, especially note 61). 

7.4 Parsing the Block Structure of the Program 

The second pass of the compiler integrates syntax analysis and code generation, 

controlled by the function syntax which is called repeatedly while working through the 

sequence of lexemes created by the first pass.  As outlined in §7.2, this task is broken 

down into three levels, the first of which involves parsing the program’s large-scale 

structure, identifying the “blocks” that constitute its procedures, sub-procedures, and 

main body, and dealing with their associated declarations (including scope issues).  This 

top level of processing invokes, as necessary, the middle (§7.5) and bottom (§7.6) 

Figure 14:  Part of the "Syntax" table 



 

 

82 

levels, which together analyse and translate the source code lying between the “begin” 

and “end” that bracket each block’s body.  But this interplay between the levels is 

almost entirely one way, enabling the block structure parsing to be treated as an 

independent task which is sufficiently straightforward to be handled almost completely 

by a finite state machine (FSM).  Moreover where the task goes beyond the capacities of 

an FSM, this can be remedied by the addition of a single counter (to track the depth of 

nested procedures), resulting in the simplest possible form of “counter machine” (e.g. 

Krishnamurthy  [69], p. 81).  Handling the parsing in this way illustrates nicely how 

abstract machines can reduce a potentially confusing problem to a transparent relative 

simplicity, and thus provides an excellent opportunity to motivate students’ interest in, 

and appreciation of, such machines (just as the use of stacks within the Turtle Machine 

can motivate interest in and appreciation of them, cf. note 36 in §5.1). 

Turtle’s FSM for analysing the block structure of Pascal source code is represented 

by Figure 16 on page 83, labelled with the same state names that are used in the 

“Syntax” table of the Visual Compiler display, pictured below.  (In the Delphi code that 

implements the compiler these “syntax state” names are prefixed with “ss” to ensure 

uniqueness and indicate their type, but such prefixes are ignored here except when 

explicitly quoting code.)  Most of the transitions between states in this FSM involve 

more than a single lexeme; moving from ProcVName to ProcVSemi, for example, 

requires a colon, followed by an identifier, followed by a semicolon.  But it would be 

wasteful and confusing to add states to the FSM corresponding to each of the 

intermediate stages of such a sequence, because once the colon has been identified, the 

only legal continuation is an identifier 

followed by a semicolon.  Hence this 

part of the compiler is implemented in 

a way that directly mirrors the 

structure of the FSM, as illustrated by 

that part of the Delphi Pascal code 

(itself part of a larger case statement) 

which handles the situation where the 

syntax state is ProcVName: 

 

Figure 15:  FSM states in the "Syntax" table 
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Figure 16:  Finite State Machine to analyse the block structure of Pascal source code 
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case lexitems[lexnum].lextype of 

 ltComma: nextlex(ltId,ssProcVName, 

                  'Comma must be followed by a variable name'); 

 ltColon: begin 

           if nextlex(ltId,ssProcVName, 

                      '":" must be followed by a type name') then 

            if nextlex(ltSemicolon,ssProcVSemi, 

                       'VAR declaration must be followed by ";"') then 

             addvtype(lexnum-1) 

          end; 

 else 

          begin 

           result:='Variable must be followed by a type specification'; 

           dec(lexnum) 

          end 

end {case} 

Here lexnum is the index of the next lexical item (lexeme) to be processed, within the 

array lexitems, and hence lexitems[lexnum].lextype gives its identified lexical type (as 

discussed in §7.3 above).  If that type is ltColon, then the nextlex function is called 

twice, first checking that the following lexeme is of type ltId – i.e. an identifier – and 

then that the next after that is of type ltSemicolon; to facilitate such iteration, nextlex 

automatically increments lexnum as it goes.  If both checks succeed, then a transition is 

made to syntax state ProcVSemi, and the addvtype(lexnum: integer) routine is called – 

this checks that the specified variable type (i.e. the identifier in question) is either 

“integer” or “boolean”, and if so, assigns it to the variable (or list of variables) 

concerned.  If any of these various checks fails, then an appropriate error message is 

given to report precisely where the failure occurred.  The error location is usually given 

by the value of lexnum at the point where it is located, but sometimes this needs to be 

adjusted, as in the final else clause where “dec(lexnum)” ensures that the error message 

for a missing type specification will be linked to the source line containing the variable 

name itself rather than whatever lexeme generated the error. 

Simple mechanisms of the sort just discussed, tied into the FSM state transitions, 

deal with most of the parsing of block headers, but various processes need to go on 

behind the scenes, “bookkeeping” and keeping track of the overall program structure.  

For example the addvtype routine mentioned above presupposes the operation of a prior 

addvar(lexnum: integer; isparam: boolean) routine, called whenever a new parameter 
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or variable name is declared (i.e. any transition to state ParName, ProcVName or 

VarName), and which adds that name to a table into which the  corresponding type can 

later be inserted by addvtype.  Recording of variable identifiers also brings the 

complication of checking for non-duplication, which requires that issues of scope be 

taken into account.  This is done by means of a “procedure stack” which monitors the 

nesting of procedures, with each procedure’s index being pushed when it starts (through 

a transition to state ProcName) and popped when it finishes (through either of the 

“end;” transitions from state PROC).  The condition of the procedure stack also 

determines the choice between the two possible “end;” transitions from state PROC 

(which are shaded in Figure 16 on page 83 to indicate the deviation here from a pure 

finite state machine to what is in effect a “1-counter machine”, the simplest kind of 

pushdown automaton, with a single stack and only one symbol in its stack alphabet).  If 

the procedure stack is empty then a transition is made to ProgSemi, but otherwise to 

ProcSemi, since the latter indicates a move into a parent procedure rather than to the 

main program. 

7.4.1 Generation of Procedure Code  

Although code generation plays relatively little role in the processing of block structure, 

it does feature when procedures start and finish.  Just as any parameter or variable name 

declaration triggers the addvar routine, so any procedure name declaration will call the 

routine addproc(lexnum: integer) at the point of transition to state ProcName.  This 

routine checks the name for non-duplication and initialises a new procedure record, 

primed so that parameters and variables can be bound to it by any immediately 

subsequent calls to addvar and addvtype.  These bindings then influence how code is 

generated when the procedure body is reached with the transition to state PROC, which 

calls the routine procbegin(lexnum: integer);  this code deals with the Turtle Machine’s 

activation of the procedure as described in §§6.3 and 6.5 (claiming Heap space and 

pushing the Procedure Register), and the initialisation of local variables and unpacking 

of parameters as illustrated in §6.6.  Finally, when the procedure finishes with one of the 

“end;” transitions mentioned above, the procend(lexnum: integer) routine is called to 

insert the PCode required to terminate the procedure (releasing Heap space, popping the 

Procedure Register, and performing an appropriate return jump etc.). 
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7.5 Parsing and Code Generation for Program 
Control Structures 

The middle level of parsing and code generation is concerned with the statement flow-

control and grouping structures that lie within the main program body, or within the 

body of individual procedures;  these mainly involve the keyword combinations 

“if … then … else”, “repeat … until”, “for … do”, and “begin … end”.  Unlike the top 

level, this parsing task goes well beyond what can be dealt with by a simple FSM or 

counter machine, in that the various keyword structures can be intermixed, and nested to 

an arbitrary degree.  Hence we resort instead to a pushdown automaton (PDA) that 

operates a stack of pending operations, yet another abstract machine whose practical 

behaviour and usefulness can be nicely illustrated by this form of compiler.  The overall 

behaviour of this automaton is represented by Figure 17 on page 87.54 

                                                

54 Figure 17 is slightly simplified, in omitting a special test for null statements following “then”, 
“else” and “do”.  In structures such as “if x=1 then <action1> else <action2>” or “for 
x:=1 to 10 do <action3>”, it is standardly permissible for any of the <action> statements to be 
absent (i.e. null), and these structures can occur embedded within other structures, for example:  
“repeat for x:=1 to 10 do {nothing}; if y<100 then y:=y*2 else {nothing} 
until y>=100”.  The Turtle compiler differs from standard Pascal in treating null statements as 
illegal if they are immediately followed by a semicolon, since in novice programs such semicolons are 
almost invariably misplaced.  But other null statements within these structures need to be compiled 
appropriately, and for this purpose the Turtle compiler makes the following test as soon as each new 
lexeme is read.  If either the new lexeme is in [until, end] and the top pending operation on the stack 
is in [poTo, poDownTo], or the new lexeme is in [until, end, else] and the top pending operation is 
in [poIfThen, poIfElse], then the lexeme pointer is decremented by 1 (so the new lexeme will be read 
again next time round the loop) and processing continues within the pushdown automaton from 
immediately below the “Process Command” node, as though a command had just been dealt with. 



 

 

87

 

          
          

    

              

          

         
          
          
          
          
          
          
          

ltEnd 

other 

READ 
<expr>
ltThen

PUSH 
poRepeat

READ 
ltId := 
<expr> 

PUSH 
poBegin

POP 
poRepeat

ltIf ltFor ltRepeat ltBegin ltUntil ltId

READ 

ltTo ltDownTo

READ 
<expr> 
ltDo 

READ 
<expr> 
ltDo 

PUSH 
poDownTo

PUSH 
poTo 

PUSH 
poIfThen

READ 
<expr> poBegin

LOOK 
AHEAD 

READ 
ltElse

ltElse 

PUSH 
poElse 

poElse,
poTo,

poDownTo

PUSH 

other

poIfThen

Process 
Command

POP 

READ next lexeme 

POP 

End of block 

Stack 
empty

Figure 17:  Pushdown Automaton to analyse program control structures 
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The main loop of the automaton begins with the reading of a tokenised lexeme 

which – if the program is syntactically correct – must be either an identifier or one of the 

keywords “if”, “for”, “repeat”, “begin”, “until”, or “end”.55 

• “if” must be followed immediately by an expression (cf. §7.6) and the keyword 

“then”;56  assuming these are found, the PDA loops back to the beginning, but 

first pushes poIfThen (one of the constants of enumerated type TPendOp) onto 

the stack of pending operations.  Immediately following the processing of the 

expression, a PCode IFNO command is generated, to jump around the “then” 

part of the conditional structure (cf. §5.3.2).57 

• “for” must be followed immediately by an identifier (which must be a declared 

integer variable name), then the assignment operator “:=”, then an expression, 

and then one of the keywords “to” or “downto” followed by another expression 

and the keyword “do”.  Again assuming all these are found, the PDA loops back 

having pushed poTo or poDownTo respectively onto the stack.  Meanwhile, 

PCode commands are generated to store the first expression’s value in the 

counting variable, and then (after the processing of the second expression), to 

test the counting variable against the second expression’s value and branch with 

an IFNO command accordingly (cf. §5.3.4).58 

• “repeat” and “begin” each simply pushes the corresponding pending operation 

(poRepeat and poBegin respectively) onto the stack before looping back. 

                                                

55 Or a semicolon, which just loops back without any further action and so is effectively ignored.  

The treatment of semicolon statement separators is not discussed here because they have little relevance 

to the PDA operation, but the compiler of course checks that they occur appropriately.  (It also combines 

with the auto-formatter to remove redundant semicolons.) 

56 This is the meaning of the “READ <expr> ltThen” box in the PDA diagram.  Here and 

elsewhere, the diagram shows only the syntactically legal options;  if the syntactic constraints are not 

respected, the compiler will generate an appropriate error message and terminate. 

57 Since the extent of the “then” part is not yet known, however, this IFNO instruction is given a 

temporary dummy argument which will in due course be backpatched as in (c) below. 

58 This IFNO instruction is given a dummy argument which will be backpatched as in (b) below. 
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• “until” pops the top pending operation from the stack, and checks that this is 

poRepeat, before going on to read an expression (which specifies the until 

condition);  then a PCode IFNO command is generated to branch back to the 

pcode line where the “repeat” occurred, depending on the expression’s value (cf. 

§5.3.3).59  “end” likewise pops the stack, checking that either it is empty (in 

which case the “end” signifies the finish of the current program block) or else 

that the popped pending operation is poBegin.  These checks ensure that the 

relevant syntactic structures have been properly nested, so that each “until” 

matches with a previous “repeat”, and each “end” with a previous “begin”. 

• An identifier indicates an assignment statement, a Turtle Graphics command, or a 

procedure call – the main processing of these is dealt with in §7.6.1 below. 

As the diagram shows, the last two cases here (encompassing “until”, “end”, 

assignment statements, Turtle Graphics commands, and procedure calls) do not 

immediately loop back to read the next tokenised lexeme, because before doing this a 

check needs to be made to see whether the current statement (which may be a statement 

sequence bracketed by “repeat … until” or “begin … end”) is within the immediate 

scope of a conditional or a “for” loop.  This check is carried out by popping the top 

pending operation from the stack, and what happens next depends on the nature of this 

pending operation. 

(a) If the pending operation is poElse, then the conditional structure is terminated by 

backpatching the argument to the PCode JUMP instruction which jumps around the 

“else” part (cf. §5.3.2). 

(b) If the pending operation is poTo (or poDownTo), then the counting loop structure is 

terminated by generating PCode commands to load and increment (or respectively 

decrement) the counting variable before the final JUMP; the argument to the IFNO 

instruction at the beginning of the structure is also backpatched (cf. §5.3.4). 

                                                

59 This implies that the relevant code line number was recorded within the poRepeat pending 

operation when it was pushed onto the stack.  Every pending operation is in fact stored as a record 

structure which includes both an item of type TPendOp and also a code line reference. 
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(c) If the pending operation is poThen, the complier looks ahead to see whether the 

next lexeme is “else”;  if so, that “else” is read, poElse is pushed onto the pending 

operations stack, and a PCode JUMP command is generated to jump around the 

“else” part of the conditional structure.60  Finally, whether or not the next lexeme 

was “else”, the argument to the IFNO instruction at the beginning of the conditional 

structure is backpatched to branch around the “then” part (cf. §5.3.2). 

(d) If the pending operation was anything other than poElse, poTo, poDownTo, or 

poIfThen, it is pushed back onto the stack of pending operations. 

In cases (a) and (b), and also case (c) where there is no “else”, the process of popping 

the top pending operation from the stack continues, as shown in Figure 17.  Thus at this 

point in the pushdown automaton, it is possible for several pending operations to be 

dealt with in turn, reflecting the fact that where conditional and counting loop structures 

are nested, a number of them can terminate together. 

As the program is parsed, the 

PDA stack is shown in the 

“Syntax” table of the Visual 

Compiler, following “PROC” 

or “PROG” depending on the 

FSM state.  This table also 

shows the calculated indents 

which are to be used if the 

program is auto-formatted. 

                                                

60 Though yet again, since the extent of the “else” part is not yet known, this JUMP instruction is 

given a dummy argument which will in due course be backpatched as in (a) above.  Note that this 

treatment of conditionals provides a resolution of the notorious “dangling else” problem which besets 

grammar-based parsers, since any “else” will automatically be paired with the nearest previous eligible 

“if”, in accordance with both standard and Delphi Pascal (e.g. “if <a> then if <b> then <c> 

else <d>” will be disambiguated as “if <a> then begin if <b> then <c> else <d> end”). 

 

      Figure 18:  PDA stack and indents in the "Syntax" table 
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7.6 Parsing and Code Generation for Individual 
Commands and Expressions 

The lowest of the three levels of parsing and code generation deals with individual Turtle 

Graphics or assignment commands and procedure calls, and also the processing of 

arithmetical or boolean expressions.  We shall deal with the latter first, for as we have 

seen, such expressions not only occur within individual commands, but also play a 

crucial role within the conditional and looping structures discussed in §7.5. 

To minimise complexity, this level of the compiler uses a fairly straightforward 

implementation of the method of recursive descent, combining code generation with 

parsing in a manner that directly reflects the relevant syntactical structures.  These 

structures are standardly represented in syntax diagrams such as those on the previous 

page – note that they are mutually recursive, since an expression always includes a 

simple expression, which in turn always includes a term, which in turn always includes a 

factor, which in turn can include either an expression or a factor.  However a factor can 

also be an individual identifier (i.e. a variable name), an integer, or a hexadecimal integer 

(all of which have previously been identified and tokenised as described in §7.3 above), 

and this is where the recursion in any particular case ultimately stops. 

To illustrate how all this is implemented, here is the code that compiles a factor, 

enclosed within a function of the same name: 

 

 function factor(start: integer): integer; 

 begin 

  case lexitems[start].lextype of 

   ltId,ltInt,ltHex: begin 

                      addloadstack(numcommands,start); 

                      result:=start+1 

                     end; 

continued on next page 
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   ltMinus: begin 

             lexitems[start].lextype:=ltNeg; {disambiguate} 

             result:=factor(start+1); 

             addpcode(numcommands,pcNeg) 

            end; 

   ltNot:   begin 

             result:=factor(start+1); 

             addpcode(numcommands,pcNot) 

            end; 

   ltLbkt:  begin 

             result:=expression(start+1); 

             if (result>0) then 

              begin 

               if (lexitems[result].lextype=ltRbkt) then 

                inc(result) 

               else 

                result:=0 

              end 

            end; 

   else     result:=0 

  end 

 end; {function factor} 

When the function is called, start specifies the index of the next lexeme to be processed, 

i.e. the lexeme which is expected to be the beginning of a factor.  As the syntax diagram 

indicates, a factor can be simply an identifier, integer, or hexadecimal integer – in any of 

these cases, the procedure addloadstack(numcommands,start) is called to make 

appropriate checks (e.g. that an identifier is a defined variable), and if these checks are 

passed, to generate the necessary PCode for loading the relevant item onto the Program 

Stack.  Then start+1 is returned as the value of the factor function, to enable syntactic 

analysis to continue from the next lexeme. 

If the next lexeme is of lexical type ltMinus or ltNot, then as the syntax diagram 

indicates, this should be followed by a factor.  Hence in this case the function calls itself 

from the following lexeme with result:=factor(start+1), and when this returns, 

generates the single PCode instruction (pcNeg or pcNot) corresponding to the operator 

lexeme.61  The point here is that the recursive call, if successful, will not only parse the 

                                                

61 Note that the code dealing with ltMinus disambiguates this to ltNeg (unary negation), because 
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factor starting at lexeme start+1, but will also generate PCode designed to leave that 

factor’s result on the Program Stack (as in the previous paragraph).  Hence that result 

can be negated, as implied in the source code, by applying an appropriate PCode 

negation operator (i.e. pcNot or pcNeg) that acts on the top Program Stack value. 

Finally, if the lexeme with which the factor starts is a left-bracket, the system 

expects this to be followed by an expression and then a right-bracket.  So the function 

expression(start+1) is called in order to identify, and generate PCode for, the expression 

in question.  If this fails, 0 will be returned and passed on also as the return value of the 

factor function, 0 being generally used to signify a syntactic error.  But if parsing of the 

expression succeeds, the value returned by expression(start+1) will be the index of the 

next lexeme after the end of the identified expression;  accordingly a check is then made 

to ensure that this lexeme is indeed a right-bracket, in which case inc(result) increments 

the function’s return value to point to the lexeme after that bracket.  Note that brackets 

in themselves (unlike identifiers, integers, negation operators etc.) do not yield any 

specific PCode instructions.  They simply ensure that the PCode generated by the 

expressions that they enclose corresponds appropriately to the sequence of processing 

indicated by the bracketing hierarchy. 

7.6.1 Code Generation for Commands and Procedure Calls 

The processing of individual Turtle Graphics commands, assignments, and procedure 

calls comes into play whenever the pushdown automaton illustrated on page 87 

encounters an identifier at the beginning of its main loop.  Assuming the program is 

syntactically correct, there are then three possibilities which are checked in turn:62 

                                                                                                                                         
the other possible interpretation of ltMinus (namely ltSubt for binary subtraction) cannot occur as the 

first lexeme of a factor.  See §7.3 for a brief discussion of this ambiguity. 

62 The order of processing shown below allows for the possibility that a variable or procedure will 

be declared with a name which is also a Turtle Graphics instruction, and if so, the identifier will be 

interpreted accordingly when that name is used within the scope of the declaration (i.e. Turtle Graphics 

instructions are not reserved words). 
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• The identifier is a recognised (and in scope) variable name, in which case it 

should be followed by the assignment operator “:=” (lexical type ltAsgn) and an 

expression. 

• The identifier is a declared (and in scope) procedure name, in which case it 

should be followed by an appropriate number of parameters in brackets. 

• The identifier is a Turtle Graphics command name, in which case it should be 

followed by an appropriate number of parameters in brackets. 

In the first case, the expression is processed by the method described in §7.6, which 

generates the necessary PCode for leaving the result of the expression on the Program 

Stack.  Then depending on the nature of the variable, an appropriate store command 

(“STVG”, “STVV” or “STVR”) is generated to perform the assignment. 

The second and third cases are initially treated in the same way – the opening 

bracket is checked, and then the parameter expressions, separated by commas, are 

repeatedly processed as in §7.6 until the final bracket is encountered (any deviation from 

this pattern producing an error message).  The PCode thus generated will leave one item 

on the Program Stack for each expression encountered, and these will be passed as the 

parameters for the procedure (cf. §6.6) or command (cf. §§5.1-2).  Hence a test is made 

to ensure that the number of parameters is correct, and if so, the necessary PCode is 

added either to call the recognised procedure (as in §6.1) or to execute the relevant 

Turtle Graphics command (see §5.1). 

 

This concludes our detailed discussion of the Turtle Machine and its compiler, 

which has been intended to show by example how relatively straightforward the system 

is, enabling it to be used effectively as a vehicle for understanding, at a relatively early 

stage, such fundamental concepts of Computer Science as machine code, stack 

operations, compilation, recursive descent, and various automata.  In Chapter 8 we 

conclude by bringing the two main themes of the thesis together, and briefly examining 

whether they may be more complementary than contrasting. 
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Chapter 8   Conclusion 

8.1 The Value of Turtle as a Vehicle for Introducing 
Computing Concepts 

We have now seen two apparently distinct aspects of the Turtle system.  On the one 

hand, as discussed in Chapters 3 and 4 and summed up in §4.4, it can be used as a 

teaching environment for novice programmers.  On the other hand, as illustrated in 

Chapters 5 to 7, it can be used as a vehicle for explaining the concepts of machine code 

and compilation, presumably to more advanced students.  So far, it might seem that 

these two teaching tasks are largely unrelated, but I shall now conclude by suggesting 

that in fact they are complementary, and that there may be unexpected benefits in having 

a system that combines them. 

8.1.1 Notional Machines 

As discussed in §4.4, many students of programming – and not by any means only 

novices – experience considerable difficulty in understanding flow of control within a 

program.  But Robins et al. point out that this can be overcome when they develop an 

adequate mental model:  “Many studies have noted the central role played by a model of 

(an abstraction of) the computer, often called a ‘notional machine’ … to provide a 

foundation for understanding the behaviour of running programs” ( [111], p. 149, cf. 

p. 158).63  Du Boulay  [41] accordingly identifies the absence of an adequate notional 

                                                

63 Studies listed by Robins et al. in this connection include du Boulay  [41], du Boulay et al.  [42], 

Mayer  [79], Hoc and Nguyen-Xuan  [58], Mendelsohn et al.  [84], and Cañas et al.  [24].  The paper by 

Ben-Ari  [12] is also particularly interesting, because he links the philosophy of constructivism (cf. §1.2 

above) with the need to teach a model, based on the unfamiliarity of algorithmic mechanisms within the 

student’s pre-existing conceptual framework.  “You have to construct a viable model that will enable 

you to predict the outcome of any operation on the model …  The relevance for CSE is that courses … 

must explicitly address the construction of a model …  If the student does not bring a preconceived 

model to class, then we must ensure that a viable hierarchy of models is constructed and refined as 

learning progresses.” (p. 260). 
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machine as one of the five main sources of difficulty in programming (pp. 283-4).  But if 

so, then the two teaching aspects of the Turtle system are quite intimately connected 

after all.  For one obvious way of helping students to develop an adequate mental model 

of computer execution is to provide an easily accessible virtual machine to study, one 

that can handle the problematic looping and recursive control-flow structures, but which 

in other respects is as straightforward to program as possible. 

The natural objection to this suggestion is that learning about virtual machines and 

low-level code, so far from reducing the problem, may prove even more confusing and 

unpopular with students than learning about high-level programming.  Certainly low-

level code is in some obvious respects more complex than the high-level equivalent, but 

on the other hand it is less abstract and more obviously mechanical, which may tip the 

balance if the student’s main problem lies in acquiring an adequate notional model of 

execution.  At any rate, there is some evidence that even novice students can cope with 

machine code if due care is taken and appropriate learning tools provided.  For example 

the “breadth-first” curriculum described by Tucker et al.  [131], developed on the basis of 

the ACM/IEEE Computing Curricula 1991 report  [1], successfully combined the 

teaching of programming with an introduction to computer organisation using a simple 

machine and assembly language simulator called “Marina”.64  This simulator was seen as 

playing a key role in facilitating the computer organisation section (p. 54), helping to 

make it one of the most popular in the curriculum (pp. 36-7, 39).  Moreover the authors 

stress that this was not at the cost of reducing the course to a shallow overview:  “The 

key factor is to organize the presentation well, introducing as much of it as is necessary 

to give students a firm understanding of its principles …  Avoid introducing a topic in a 

survey fashion.” (p. 54).  Turtle is clearly a potential vehicle for such a presentation. 

                                                

64 Another interesting example is the PIPPIN machine described by Decker and Hirschfield  [33], 

which is explicitly designed for use with novice students, though its associated compiler, “Rosetta”, is 

limited to the compilation of an assignment statement involving simple expression evaluation. 
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8.1.2 Deep Understanding 

Leaving aside the possible value of the Turtle Machine to novices, it has more obvious 

potential in helping relatively advanced students to knit together the various aspects of 

the discipline, which according to many writers is the key to robust “deep” 

understanding (e.g. Marton and Säljö  [78], Gibbs  [44]).  And again this seems to be 

closely related to having an adequate notional machine, for it is striking how both 

lecturers and students identify deep understanding with “having a mental picture” of 

what is going on (Newton et al.  [90], pp. 48, 51, cf. Robins et al.  [111], pp. 140, 151).  

Such a mental picture is far easier to acquire within a system whose workings are based 

on a systematic and intuitive metaphor (cf. §1.2 above), and which – like Turtle’s visual 

compiler – faithfully displays its inner workings consistently with that metaphor (cf. Pane 

and Myers  [95] section 5.2). 

8.1.3 Automata Early 

Although formal automata theory is generally considered far too abstract to be given a 

place in the first year studies of Computing students, Chua and Winton  [29] argue that 

automata are best introduced early, in a way that emphasises their practical applicability, 

in order to prepare the ground for later work by developing maturity in thinking about 

them.  Again this approach would give Turtle an obvious role, enabling the explanation 

of machine execution to be combined with a discussion of some of the stages of 

compilation, aided by the Visual Compiler display showing the ongoing state of the FSM 

and PDA that it uses.  Neither the FSM nor the PDA are overly complex, and both have 

a very clear practical role in the compilation process, so this can be used to motivate an 

appreciation of their more general practical value.  It is interesting to speculate, for 

example, what effect such a background might have had on students faced with the kind 

of arithmetic expression evaluation tasks that led to such disappointing results in 

McCracken et al.  [83], where the lack of a confident understanding of stack structures 

was seriously prejudicial. 
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8.1.4 Familiar Compilation 

Courses on compilers are notoriously difficult and time-consuming, so that typically very 

few students take them, and those that do are given the task of compiling an unfamiliar 

“toy” language rather than the real thing (such languages include Haynes et al’s 

ORACLE  [54], Appelbe’s MINIPASCAL  [6], Aiken’s Cool  [4], Baldwin’s MinimL  [10], 

and numerous others with and without names).  In this context there may be a real virtue 

in both using the Turtle system to introduce programming to novices, and also later 

returning to it when they come to consider the study of compilation.  At least one hurdle 

of unfamiliarity is thus removed, probably making the subject seem both more 

approachable and more relevant. 

8.2 Conclusion: The Achievements of this Work 

The last few sections have been to some extent speculative, and the potential value of 

the Turtle system in teaching about machine code, automata, and compilation is largely 

independent of whether this can indeed also be closely related to the teaching of 

introductory programming.  My more fundamental claims about the Turtle Machine and 

its workings are: 

(A4) That it is simple enough for more advanced students to understand and to 

learn from (and is indeed simpler in relevant respects than any machine of 

comparable power that I know of). 

(A5) Likewise its compiler, though in a sense relatively complex (because it 

mixes parsing techniques rather than starting from a comprehensive 

language grammar), presents the parsing process in a way that is easier to 

grasp, and from which to learn widely applicable practical lessons, than the 

more abstract treatments which dominate the teaching literature. 

(A4) and (A5) here refer to the intended achievements listed in §1.7, the others of which 

have already been presented earlier in the thesis.  To recapitulate briefly, Chapter 1 

argued the case for developing an integrated Turtle Graphics environment for novice 

programming (A1), and this case was later strongly corroborated by the teaching 
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outcomes reported in Chapter 4.  Chapter 2 gave a preview of the finished product, 

while Chapter 3 justified the choice of source language (A2).  The program itself, and 

the feedback from its extensive practical use as presented in Chapter 4, testify to its 

power, robustness, and attractiveness to students (A3).  Chapters 5 and 6 then discussed 

the Turtle virtual machine (A4), and Chapter 7 the compiler (A5).  The visual interface 

to these, illustrated both in §2.3 and §§7.3-5, significantly adds to their teaching value 

(A6). 

Overall, therefore, I am very satisfied with the outcome of this project, and feel that 

the Turtle system is a worthwhile contribution to the teaching of Computing.  I hope, 

moreover, that it has gone at least some way to meeting the challenge laid down by 

Holmes and Smith  [59], to present both introductory and more advanced topics of 

Computer Science in a way that is accessible to relative novices, “in a manner that will 

capture the imagination of the learners” and convey the subject’s “scope, beauty, genius, 

and fun” (p. 204). 

____________________ 
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Appendix A – Lecture Plans and 
Example Coursework 

The following sections spell out the plan for each of the four compulsory lectures in the 

“Programming Concepts” component, designed to cover enough programming concepts 

and syntax to enable students to meet the Delphi system for the first time in Lecture 5.  

The lecture plans are in note form addressed to the lecturer, mostly copied verbatim 

from those produced for the session 2002-03, and are followed by an example 

coursework. 

Plan for First Lecture on Turtle 

(a) In every lecture apart from the last, emphasise that they shouldn’t yet be worrying about the coursework – 

their concern should be simply to master what’s been covered in the lecture concerned, and to have a go at 

the exercises that take them further.  Also, they shouldn’t need to make lots of notes because all the details 

are in the Help file – however do emphasise when you make a general “engineering” point that they should 

be noting it down (e.g. advice for debugging, tips for systematic working etc. that aren’t in the Help). 

(b) Start with the module handout, which provides syllabus and administrative details (but will need 

modification each semester to reflect lecture times etc.).  When commenting on the structure, emphasise that 

the Pascal language taught in the core is the same language that is required for Delphi, so it’s not just a toy. 

(c) The first lecture’s objective is to introduce the Turtle system to a level where students can explore it for 

themselves, and have a go at the first 4 exercises.  Don’t tell them that they’re expected to complete the first 

4 exercises before the next lecture; rather, say this sort of thing: “You’ll benefit far more from the next 

lecture if you’ve at least had a go at exercises 1 to 4.  But don’t worry if you get stuck, and don’t spend ages 

trying to solve problems if you encounter them – this is likely to do more harm than good.  Next week I’ll be 

going over what you need to do for these exercises, but what I say will mean more to you if you’ve at least 

made an initial try at them, even if you get virtually nowhere with them.”  Also advise them that the exercises 

provide a valuable fail-safe in case they mess up the coursework – they will be invited to submit their 

exercises along with the coursework, and in this case the exercises might enable them to pass even if their 

coursework fails (however this will not compensate for failure to make a serious attempt at the coursework). 

(d) Show them how to access and start up the system, and emphasise that it can be downloaded for home use. 

(e) Show them the Help system, especially the exercises section.  Read some of this through, and show them how 

it advises to start with Illustrative program 1 (pointing out that there are other illustrative programs too).  

Using this program as an illustration, informally cover all the points in the section on “The Program” which 

is linked from the exercises Help, and afterwards draw their attention to the fact that everything you’ve said is 

there in the Help section, so they can read it through for themselves at leisure.  Particular points to note when 
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running the program include the various areas of the screen (especially the program window, Canvas, “RUN” 

button, status bar); examples of program syntax (semicolons etc. – tell them not to worry too much about the 

details of this yet, just to note); and of course how the turtle’s activity is determined by the commands.  When 

showing them the Help section on “The Program”, draw attention to the links it makes to the reference 

sections (give them a quick glimpse of these), and mention again the illustrative programs and exercises. 

(f) Work through Exercises 1 and 2 in the lecture, illustrating as you do so how you are making use of the Help 

system to find details on new commands etc.  Don’t bother to do the face particularly carefully – but it’s a 

good idea to show them how to do the mouth, illustrating how the order of commands can be important (e.g. 

so a white masking blot doesn’t obliterate a nose you’ve already drawn). 

(g) Exercises 1 and 2 give the opportunity to cover some of the menu features (especially in the File and Edit 

menus) – take advantage of this by drawing attention to them, for example by using the Clipboard commands 

to take stuff from the Help file. 

(h) End by inviting them to do Exercises 1 and 2 for themselves before the next lecture, and to have a go at 

Exercises 3 and 4.  Draw their attention to the illustrative programs on FOR loops, and take the opportunity 

to show them the Layout menu (because the second illustrative program requires the larger Canvas).  Advise 

them to use the smaller Canvas in general, because then, if they find that their program moves beyond it, they 

can try running it instead on the larger Canvas (the other virtue of the large Canvas is that it’s centred around 

the origin, and this can be nice if they’re doing clever symmetrical patterns). 

Plan for Second Lecture on Turtle 

(a) Start by making sure that everyone has the module handout, and repeating the most important administrative 

and “don’t worry” stuff. 

(b) Again run quickly through the material covered in Lecture 1, adjusting your pace to take account of how 

many people said they didn’t have the handout (i.e. had missed Lecture 1).  If very few missed, then this can 

be significantly quicker than if lots did.  But the repetition will be useful to build up confidence for everyone, 

so it’s not wasted time. 

(c) Work through Exercises 1 and 2 quite briskly. 

(d) Work through Exercise 3 more slowly, showing them how to do the faces with a FOR loop (but probably 

leave the repeat loop for those who are keen to try for themselves).  Make reference to the two relevant 

illustrative programs and point out how they work. 

(e) Introduce variables as labelled boxes, and point out that although all the variables we’ll be dealing with in 

Turtle are integers, declaration of variable types is essential once they get on to Delphi.  Even in Turtle, 

booleans are available for keenies if they want to explore that for themselves. 

(f) Draw attention to the importance of indenting, and its relation to program syntax.  Emphasise use of the auto-

format, and how this can reveal problems (e.g. if they put a semicolon immediately after “do”). 
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(g) Advice when working with loops:  (i) Start with the loop working once only (e.g. “for count := 1 to 1 do”);  

(ii) Draw a black blot at the end of the loop, so you can see clearly where the turtle’s ending up;  (iii) When 

that’s OK, move on to the loop working twice only (“for count:=1 to 2 do”);  (iv) Only when that’s OK, move 

on to more.  It helps to motivate this advice if you fix it that the first time you run Exercise 3, you get five 

faces in different orientations and on top of each other!  Then you can illustrate how to fix the problem 

systematically in this way. 

(h) Don’t spend long on the nested loops, since it’s important not to confuse.  Show it briefly, and make 

reference to the relevant illustrative program, drawing attention again to the value of indentation. 

(g) If there’s time, briefly introduce the notion of a procedure, putting all the face commands into a procedure 

and showing how this makes the loop particularly easy to understand – point out that this is in Exercise 6. 

(h) Finally, ask them to complete Exercises 1 to 4 before the next lecture, and invite them to try Exercises 5 to 8, 

but again emphasise that they shouldn’t worry if they get stuck. 

Plan for Third Lecture on Turtle 

(a) Remind students about the multiple faces program, and introduce the notion of a procedure using this (as 

covered in Exercise 6), pointing out how it makes the loop(s) easier to understand (especially when there are 

nested loops).  Again show the FOR loop illustrative programs, and remind them to look at these. 

(b) Work through Exercise 5 systematically, drawing attention to all the points mentioned in the Help file in 

relation to it. 

(c) Move on, as in the Help for Exercise 5, to the material in the section on “Procedures and Parameters” (up to 

and including “Introducing Simple Value Parameters”), again drawing attention to the fact that everything 

you are covering can be read there too, and also to the two relevant illustrative programs – the second one of 

these introduces DOWNTO, which is worth mentioning for the sake of completeness (but don’t waste time 

doing any more on it). 

(d) Now move on to recursion, again following the material in the “Procedures and Parameters” section (and 

again pointing this out) – take the opportunity to emphasise at appropriate points how a recursive procedure 

has to have its own local copy of the relevant variable(s), as explained in the section on “Scope”. 

(e) Start by introducing the Cat in the Hat (from the eponymous children’s book by Dr Seuss), a mischievous cat 

who tries to be helpful but invariably causes trouble.  A boy and a girl, left home by their mother with the job 

of clearing snow from the path, are visited by the Cat in the Hat who offers to help.  However so far from 

helping, he simply manages to turn most of the snow red, so now the children have the extra job of cleaning 

the snow!  It’s at this point that the Cat in the Hat introduces his helpers, Little Cats A to Z, each of which 

lives inside the hat of the previous cat.  The Cat in the Hat Powerpoint show gives four double-page spreads 

from the book, covering the unveiling of Little Cats A to G – read these through, in an appropriate rhythm to 

bring out the humour. 
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(f) Now copy and run the simple non-recursive triangles program in the “Recursion” sub-section, and explain 

that the procedure gives the instructions that a cat needs to follow for drawing a triangle. 

(g) What’s special about recursion, though, is that at any point in drawing its own triangle, a cat can “pop” 

another cat out of its hat, and instruct it to go and do something and then jump back into the hat, before the 

initial cat continues on its way.  Illustrate this first by having the triangle procedure include just one recursive 

call, then all three (as in the illustrative program). 

(h) When working through all this, it helps a lot if you walk out the steps of the various cats, and mime the hat 

operations etc. 

(i) Show the students “The Recursion Factory” from the Help menu, and invite them to play with it to produce 

their own recursive designs.  Explain how such designs can be saved to the Clipboard or to a file using the 

File menu. 

(j) Finally, ask the students to complete Exercises 5 to 8 before the next lecture, and invite them to have a go at 

Exercises 9 to 12. 

Plan for Fourth Lecture on Turtle 

(a) Start by reminding students briefly about what was covered last time, making reference to the relevant 

illustrative programs and (especially) Help sections. 

(b) Run the “REPEAT loop” and “Combining structures” illustrative programs, to show the kind of thing that’s 

going to be covered in this lecture. 

(c) Work through Exercises 9 to 11, following the order of presentation given in the Help file (which includes 

reference to the “Programming Essentials” section for the syntax and meaning of “if” statements). 

(d) Draw attention to the commands UPDATE and NOUPDATE, which are mentioned in connection with 

Exercise 8 but are particularly important when simulating smooth motion. 

(e) Having shown how to produce smooth motion of a single object, mention and demonstrate (but do not 

discuss) the illustrative programs on “Reference (VAR) parameters” and “Multiple bouncing balls”, which 

ambitious students might wish to follow up themselves (with the subsection on “Value and Reference 

Parameters” from the Help section on “Procedures and Parameters”). 

(f) Briefly draw attention to the material covered in the remaining illustrative programs, and how this can be 

followed up using the Help file: 

 1. Cycling colours:  RANDCOL as a random number generator, and use of MOD to cycle (note that MOD 

is also used in the “Combining structures” illustrative program to produce the steps, so it’s worth 

pointing out how useful it can be for any oscillating pattern). 

 2. Using booleans:  more randomness, and boolean variables. 
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 3. Using POLYGON with FORGET:  mention POLYGON and POLYLINE (both of which are relatively 

likely to be useful for all students), and explain how FORGET can be used to extend their power. 

 4. 3D effects with colour:  just use this as an opportunity to draw attention to Turtle’s ability to handle 

colours in more powerful ways than have been shown before, making reference to the Help system for 

anyone who wants to follow this up. 

(g) Finish off by discussing the coursework and associated administrative arrangements, and by reminding 

students about the final lecture on the Turtle compiler (to which all are invited, but for which attendance is 

not compulsory – advertise it as of particular interest for those who want to know what goes on “under the 

bonnet” of a real computer). 

 

Illustrative “Programming Concepts” Coursework 

This illustrates the typical content of a recent Turtle Graphics Programming coursework Web page, omitting 

cross-references, links, and general advice on submission method, deadlines, plagiarism, help sessions, 

newsgroups, example submissions, and other standard learning resources etc. 

 

Outline 

The coursework for this component falls into two parts: 

Part I 

Choose two from the following six features of Turtle Graphics Pascal: 

 (a) POLYLINE or POLYGON 

 (b) FOR – DO loops 

 (c) REPEAT – UNTIL loops 

 (d) PROCEDUREs with parameters (non-recursive) 

 (e) Recursion 

 (f) Colour codes and colour handling 

Then illustrate each of your two chosen features with a short example program, preferably of less than 20 lines 

each, and aiming to satisfy the criteria given below (e.g. correctly named, clarity, interest, relevance).  Note that 

these short example programs should be quite distinct from your main Part II program - you will not be given credit 

for merely extracting parts of that program and submitting them for Part I. 
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Part II 

Construct a reasonably sized program (at least 50-100 lines altogether) which creates an interesting design of your 

choice, using every one of the types of command and structure mentioned in the Exercises page of the Turtle 

Graphics Help file (details of exactly what this requirement amounts to are given below, together with the criteria 

by which your program as a whole will be judged). Your design might be abstract, or it could be a picture.  And it 

might incorporate movement, but it need not - however it should have a reasonable degree of complexity, produced 

in a clearly comprehensible way by making use of loops and procedural structures. 

The program that you produce should contain at least two procedures, each of which should have a clear 

purpose. The specification of each procedure's purpose, and a brief description of the program's intended behaviour 

and of any issues you have encountered in its development, should be written in a text file and submitted with your 

programs. 

You are also invited (but not expected) to submit your work on the built-in Turtle Graphics exercises, which 

may act as a "safety net" to help you pass if for some reason you have a disaster with your main program (e.g. if 

having done a lot of work on that program, you can't get it to run - you will NOT pass if you haven't at least made 

a substantial effort). 

Detailed Requirements and Assessment Criteria 

Part I 

Having chosen your two features of Turtle Graphics Pascal (from the six options of POLYLINE or POLYGON, 

FOR – DO loops, REPEAT – UNTIL loops, PROCEDUREs with parameters, Recursion, and Colour codes and 

colour handling), you should try to produce a short illustrative program for each of them, satisfying the following 

criteria: 

• Programs named appropriately (see details of items to be submitted below). 

• At most 20 lines in each illustrative program. 

• Program clearly written and formatted (e.g. using the auto-format facility!), and easy to understand. 

• Producing a visually interesting result. 

• A relevant visual result, in that someone looking at it together with the program could see fairly clearly what 

use is being made of the feature being illustrated, and/or how that feature assists in creating the visual effect. 

Part II 

The main component of the coursework is to construct a relatively large program (at least 50-100 lines altogether) 

which creates an interesting design of your choice, using every one of the types of command and structure 

mentioned in the Exercises page of the Turtle Graphics Help file - this means that it should contain at least one 

instance from each of the following groups (and you will be given credit for showing yourself able to use a variety 

of commands, so it's a good idea to aim to use all of these commands and structures at least once, but don't feel you 

have to do this if doing so wouldn't fit smoothly into your program): 
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 relative movement:  FORWARD, BACK, MOVEXY, DRAWXY 

 direction:    LEFT, RIGHT 

 absolute movement:  HOME, SETX, SETY, SETXY 

 shapes:    CIRCLE, BLOT, POLYLINE, POLYGON 

 pen settings:   COLOUR, RANDCOL, THICKNESS 

 drawing control:   PENUP, PENDOWN, NOUPDATE, UPDATE, PAUSE 

 procedures:    PROCEDURE (with parameters) 

 for loops:    FOR – TO, FOR – DOWNTO 

 repeat loops:   REPEAT – UNTIL 

 conditionals:   IF – THEN – ELSE 

 variable assignment:  := 

You may also want to consider using the following: 

 BLANK, CANVAS:  to control the appearance of the canvas; 

 REMEMBER, FORGET: to control the behaviour of POLYLINE and/or POLYGON; 

 Arithmetical, relational and boolean operators. 

Your program is also required to contain at least two procedures, preferably both with parameters, each of which 

should have a clearly identifiable purpose.  Ideally, these two procedures should each do a single "job" which is 

fairly easy to describe and understand but which is at least moderately complex (so each procedure should contain 

at least 5-10 commands).  A procedure of this kind is particularly valuable, because not only does it make the 

program easier to understand by dividing it up into easily understandable tasks, but also, it can save you work in 

the long run because the very same procedure, once written and checked, can be copied into any other Turtle 

program where you need to do the same job (and if you got it right first time, won't need to be re-written or re-

checked). 

The specification of each procedure's purpose, and a brief description of the program's intended behaviour 

and of any issues you have encountered in its development, should be written in a text file and submitted with your 

programs. The point of this requirement is first, to show that you have thought about the design of your program 

and what it is intended to do; secondly, to show that you understand what your procedures do and how they 

contribute to the program's overall structure; and thirdly, to give you an opportunity to mention any aspects of your 

work that you are particularly pleased with, or any difficulties that you have spent time on and that you would like 

the markers to take into account. 

Apart from the various points already mentioned above, the following criteria will be taken into account in 

marking your work: 

• Program MUST run correctly, without syntax errors. 

• Program MUST be titled with your own username – so if your username is "DEP1ABC", then the first line of 

your program should read: “PROGRAM dep1abc;”, and it should be saved under the filename 

DEP1ABC.TGP. 

• Text file MUST be saved under the filename PROGDESC.TXT. 



 

 

116 

• Program clearly written and formatted (e.g. using the auto-format facility), and relatively easy to understand 

(taking into account the complexity of what it does). 

• Program should be annotated with comments to help indicate what is going on in different parts of it. 

• Producing a visually interesting (and maybe even entertaining) result. 

• Appropriate use of commands and structures to produce this result. 

Items to be Submitted 

• TWO illustrative programs for Part I, satisfying the criteria specified above and with names each reflecting 

their purpose, so that the program title (in the first line of the program) is either EGPOLYLINE, 

EGPOLYGON, EGFOR, EGREPEAT, EGPROCEDURE, EGRECURSION, or EGCOLOUR as appropriate, 

while the filename of the program file is either EGPOLYLINE.TGP, EGPOLYGON.TGP, EGFOR.TGP, 

EGREPEAT.TGP, EGPROCEDURE.TGP, EGRECURSION.TGP, or EGCOLOUR.TGP. 

• ONE main program for Part II, satisfying the criteria above and with a program and filename corresponding to 

your own username (as explained in detail above). 

• ONE plain text file called PROGDESC.TXT describing your main program, as explained in detail above. 

• If you wish, the programs that you have done for the self-teach exercises in the Turtle Graphics Help file. Note 

(a) that to be taken into account, these exercise programs must be named correctly (e.g. "TGPX10.TGP"); and 

(b) that they will not usually count towards your mark unless they are needed to provide a "safety net" (e.g. 

where your main submitted program goes seriously wrong in some way, in which case evidence of having done 

the exercises competently could enable you to pass nevertheless). 

Advice on Approaching Your Work 

You should plan what you are going to do in Part II of the coursework before you create your program.  Get plenty 

of scrap paper to hand and think about what kind of design or effect you want to produce.  Think about what you 

want your procedures to do, what global and local variables you will need and so on.  As you begin to write your 

code, annotate it with comments so that you can keep track of where you are up to.  You will find the coursework 

much easier if you have a clear idea of what you are trying to do in your program.  This will also make it easier for 

you to write up your text file.  You should also bear in mind that when your coursework is marked, the sections of 

your code will be examined in the context of how they contribute to the overall workings of the program.  If you 

just throw in a random jumble of drawing instructions, you will end up with a program that looks a mess and is 

unlikely to produce a visually interesting result. 

Always allow plenty of time for debugging and tidying up your program. This often takes much longer than 

working out the general ideas behind the program! 
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Appendix B – Possible Future 
Developments 

The development and refinement of a system such as Turtle is potentially endless, 

because there are so many useful features that could be added to the editor, the 

environment, the Visual Compiler, and the help resources;  indeed it would be relatively 

straightforward to fill an entire thesis with a discussion of the possibilities.  Since space 

does not permit any such extended discussion, I shall confine myself here to merely 

listing a few of these, together with references to some relevant literature that suggests 

possible alternative approaches.  Deek and McHugh  [35] provide a particularly useful 

survey of many varied systems for supporting the learning of programming, making 

reference to most of those mentioned below. 

The Editor 

Currently the system’s editor is relatively basic, and it could usefully be enhanced with 

such features as search and replace, syntax highlighting, and multiple file processing, to 

mention only the most obvious possibilities.  More radical suggestions might include a 

syntax-tree-based code generator such as that incorporated within the SUPPORT system 

(Zelkowitz et al.  [140]) which also uses Pascal, or automated translation from 

pseudocode as provided by SCHEMACODE (Robillard  [110]), which supports Pascal 

as well as other syntaxes.  However such options would require integration with the 

standard text editor if the system were to continue to provide familiarisation with 

conventional code editing, as required for it to serve as an appropriate bridge to Delphi 

or Kylix.65 

                                                

65 For the same reason, I do not consider here the use of graphics-based programming tools along 

the lines of Pict (Glinert E. and Tanimoto  [45]), Amethyst (Myers et al.  [87]), DSP (Olsen  [92]), ASA 

(Guimaraes et al.  [48]), or BACCII (Calloni and Bagert  [23]). 
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The Environment 

Another worthwhile addition might be a library of templates and examples, as provided 

by the Example-Based Programming System (EBPS) of Neal  [89].  Sloman  [122] 

suggests a large number of other features worthy of consideration within a programming 

environment for novices, including interactive stepping through a program, incremental 

compilation and various “intelligent” aids.  Similar themes are also explored in Atwood 

et al.  [8], while Pane et al.  [96], though primarily focused on the design of a visual 

environment for children, draw attention to a number of usability criteria that would also 

be worth bearing in mind. 

The Language 

For the teaching of loops, it is useful to have a “break” command like that of Delphi, 

likewise “exit” to quit from a procedure (enabling a “middle exit” strategy which 

Soloway et al.  [125] identify as being helpful for novices).  Mutual recursion would be 

less restricted if the system had a “forward” or “deferred” directive (cf. note 44).  Other 

additions that might be worth considering, if only as selectable options (to avoid 

potential overload for novices), would be functions, “while” and “case”. 

Interactivity is currently not possible while a program is running except to halt it, 

and output is restricted to geometrical shapes.  Other possibilities include fixed or 

program-definable input boxes and buttons (together with events), and display of 

number strings.  Arbitrary text strings would require more radical revisions to the Turtle 

Machine, and introduction of a string type would imply extension of the range of basic 

concepts conveyable by the system, since type checking would then be essential.  Even if 

integers and booleans remain the only primitive types, such checking might be a useful 

addition.  Arrays would also be valuable, especially if visual output of numbers is 

facilitated, since this would enable the system to be used to illustrate ideas of sorting and 

complexity.  If the Visual Compiler is extended accordingly (e.g. with counting of 

primitive operations), then some of the ideas from the systems reviewed by Chalk  [27] 

might be worth considering. 
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More fundamentally, it would be desirable to incorporate additional language 

syntaxes, notably that of Java, which could be combined with moving to an object-

oriented approach. The notion of a turtle as an object is very natural, and would open 

the door to multiple turtles which can interact (as explored by Resnick  [108] with his 

development of StarLogo).  Modern systems are increasingly composed of interacting 

objects with independent threads of control, and object-orientation would enable 

programming to be taught in the spirit of this new paradigm, as strongly advocated by 

Stein  [129] under the motto “computation as interaction”.  A less fundamental but more 

easily manageable change would be to allow Java syntax but remain procedural, taking 

advantage of the restriction to introduce intertranslatability between Pascal and Java 

syntax (which might in itself have a significant educational value for novices). 

The Compiler 

Leaving aside changes to the compiler implied by the suggestions above, it might be 

useful to extend the range of error messages and warnings, also adding corrective hints 

of the type described by Lewis and Mulley  [73], for example to warn students of 

apparent identifier/keyword conflicts, duplicate identifiers in nested scopes, variables not 

used or not initialised etc. 

The Illustrative Programs and Tutorial Material 

If new features are added such as those listed under “The Language” above, then it will 

obviously be appropriate to update the illustrative programs (and corresponding tutorial 

Help file sections) accordingly.  Apart from this, an interesting possibility is to develop 

the discussion of recursion into the area of fractal patterns, perhaps linking this with the 

theory of Lindenmayer systems (“L-systems”), for the display of which Turtle Graphics 

is already known to be a useful vehicle (Bridges  [16], Alfonseca and Ortega  [5], Proulx 

 [106]). 


