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Abstract The concept of agency is important in philosophy, cognitive science, and
artificial intelligence. Our aim in this paper is to highlight some of the issues that
arise when considering the concept of agency across these disciplines. We discuss
two different views of agency: agents as actors (the originators of purposeful de-
liberate action); and agents as intentional systems (systems to which we attribute
mental states such as beliefs and desires). We focus in particular on the view of
agents as intentional systems, and discuss Baron-Cohen’s model of the human in-
tentional system. We conclude by discussing what these different views tell us with
respect to the goal of constructing artificial autonomous agents.
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1 Introduction

As we look around our world and try to make sense of what we see, it seems that we
naturally make a distinction between entities that in this paper we will call “agents”,
and other objects. An agent in the sense of this paper is something that seems to
have a similar status to us as a self-determining actor. When a child deliberates over
which chocolate to choose from a selection, and carefully picks one, we perceive
agency: there is choice, and deliberate, purposeful, autonomous action. In contrast,
when a plant grows from underneath a rock, and over time pushes the rock to one
side, we see no agency: there is action, of a kind, but we perceive neither deliberation
nor purpose in the action.

The concept of agency is important for philosophers (who are interested in un-
derstanding what it means to be a self-determining being) and for cognitive sci-
entists and psychologists (who seek to understand, for example, how some people
can come to lack some of the attributes that we associate with fully realised au-
tonomous agents, and how to prevent and treat such conditions). However, the con-
cept of agency is also important for researchers in computer science and artificial
intelligence, who wish to build computer systems that are capable of purposeful
autonomous action (either individually or in coordination with each other). If such
artificial agents are to interact with people, then it must be helpful also to understand
how people make sense of agency.

The aim of this paper is to survey and critically analyse various ways of con-
ceptualising agents, and to propose what we consider to be a promising approach.
Our discussion encompasses contributions from the literature on philosophy, cogni-
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tive science, and artificial intelligence. We start by examining two different views
of agency:

• First-personal view. From this perspective, agents are purposeful originators of
deliberate action, moved by conscious purposes.

• Third-personal view. From this perspective, agents are entities whose behaviour
can be predicted and explained through the attribution to them of beliefs, desires,
and rational choice.

Cutting across these perspectives is the issue of higher-order intentional reasoning,
by which an agent may adopt the third-personal view of other agents and adapt its
behaviour accordingly, based in part on the intentional states that it attributes to
those other agents. We shall see some evidence that such reasoning — a distinctive
characteristic of human beings in social groups — provides a plausible evolutionary
driver of our own brain size and conspicuous “intelligence”. Following a discussion
of the human intentional system and the condition of autism (drawing on work by Si-
mon Baron-Cohen), we turn to the question of agency in silico, and ask what lessons
can be learned with regard to the construction of artificial autonomous agents.

2 Agency from the First-Personal Perspective

We will begin with the idea that agents are the conscious originators of purposeful
deliberate action. As conscious beings ourselves, we naturally find this a compelling
viewpoint, and it has understandably spawned many centuries of discussion about
such thorny problems as free will, personal identity, and the relation between mind
and body. Even if we leave these old chestnuts aside, however, the view raises other
difficulties, which it will be useful to rehearse briefly.

First, there is the basic problem of how actions should be counted and individ-
uated (which also arises, though perhaps less severely, from the third-personal per-
spective). Consider the following classic example, due to John Searle [31]. On 28
June 1914, the 19-year-old Yugoslav Nationalist Gavrilo Princip assassinated Arch-
duke Franz Ferdinand of Austria, and thereby set in motion a chain of events that
are generally accepted to have led to World War I, and hence the deaths of millions
of people. This is, surely, one of the most famous deliberate actions in history. But
if we try to isolate exactly what action it was that Princip carried out, we run into
difficulties, with many different possibilities, including:

• Gavrilo squeezed his finger;
• Gavrilo pulled the trigger;
• Gavrilo fired a gun;
• Gavrilo assassinated Archduke Ferdinand;
• Gavrilo struck a blow against Austria;
• Gavrilo started World War I.

All six of these seem to be legitimate descriptions of what it was that Princip did,
yet we are naturally reluctant to say that he simultaneously performed a host of
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actions through the simple squeezing of his finger. We would like to isolate some
privileged description, but can be pulled in different directions when we attempt
to do so. One tempting thought here is that the remote effects of what Princip did
are surely no part of his action: allowing them to be so would mean that people
are routinely completing actions long after they have died (as well as performing
countless actions simultaneously, e.g., moving towards lots of different objects as
we walk). This line of thought naturally leads us to identify the genuine action as
the initiation of the entire causal process in Princip’s own body — the part over
which he exercised direct control in squeezing his finger. But if we go that far,
should we not go further? Princip’s finger movement was caused by his muscles
contracting, which was in turn caused by some neurons firing, which was caused
by some chemical reactions. . . and so on. We seem to need some notion of basic
or primitive action to halt this regress, but if such primitive actions are at the level
of neuronal activity, then they are clearly not directly conscious or introspectible.
This, however, makes them very doubtful paradigms of deliberate action, especially
from the first-personal perspective whose focus is precisely on consciousness, and
is therefore quite oblivious of the detailed activity of our muscles and neurons.

(As an aside, notice that when we consider the notion of agency in the context
of computers, this threat of regress is, to some extent at least, mitigated. Computer
processors are designed using an explicit notion of atomic action — in the form
of an “atomic program instruction” — an indivisible instruction carried out by the
processor.)

In reaction to these difficulties, a quite different tempting thought is precisely to
appeal to our first-person experience, and to identify the genuine action with the
effect that we consciously intend. But here we can face the problems of both too
much, and too little, consciousness. For on the one hand, Princip plausibly intended
at least four of the six action descriptions listed above, and again, this route will
lead to posthumous action (since people routinely act with the conscious intention
of bringing about effects after their death, such as providing for their children —
see [20, pp.68-73] for the more general problem of trying to pin down the timing of
extended actions). On the other hand, a great many of the actions that we perform
intentionally are done without explicit consciousness of them, and the more expert
we become at a skill (such as driving, riding a bike, typing, or playing the piano), the
more likely we are to perform the actions that it involves with minimal conscious-
ness of what we are doing (and indeed trying to concentrate on what we are doing is
quite likely to disrupt our performance). Even when we do become fully conscious
of acting in such a context — for example, when I suddenly swerve away on seeing
a pedestrian fall into the road just ahead of my car — such activity is likely to pre-
cede our consciousness of it, and its emergency, “instinctive” nature anyway makes
it an unlikely paradigm of conscious deliberate action.

In the face of these sorts of difficulties, many philosophers (notably Michael E.
Bratman [6]) have come to prefer an account of intentional action in terms of plans.
Here, for example, is the first approximate formulation by Mele and Moser:

A person, S, intentionally performs an action, A, at a time, t, only if at t, S has an action
plan, P, that includes, or at least can suitably guide, her A-ing. [25, p.43]
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They go on to add further conditions, requiring that S have an intention which in-
cludes action plan P, and also that S “suitably follows her intention-embedded plan
P in A-ing” [25, p.52] (for present purposes we can ignore here the additional con-
ditions that Mele and Moser formulate to capture plausible constraints on evidence,
skill, reliability, and luck). But importantly, intentionality is consistent with S’s hav-
ing “an intention that encompasses, . . . subconsciously, a plan that guides her A-
ing” [25, p.45]. Seeing actions as falling into a pattern guided by a plan thus enables
habitual or automatic actions to be brought into the account, whether they are con-
scious or not.

All this somewhat undermines the all-too-natural assumption that the first-
personal point of view is specially privileged when it comes to the identification
of, and understanding of, action. And as we shall see later, such theories of hu-
man action (e.g., Bratman’s) have already borne fruit in work towards the design
of practical reasoning computer agents. But in fact there is nothing here that pre-
cludes the idea that consciousness of what we are doing — and conscious reflection
on it — plays a major role in human life and experience. A cognitive model that
explains action in informational terms is perfectly compatible with the supposition
that certain aspects of its operation may be available in some way to consciousness.
For example, Goldman [19] sketches the model of action proposed by Norman and
Shallice [28] and explains how conscious awareness “of the selection of an action
schema, or a ‘command’ to the motor system” could play a role within it.

There might well, however, seem a threat here to our conception of human free
will, if consciousness of what we are doing is seen as post-hoc monitoring of un-
conscious cognitive processes that have already taken place by the time we become
aware of them. Such worries may be sharpened by recent research in neuropsychol-
ogy, in which observations using MRI scanners indicated that the mental sensation
of conscious decision can lag quite some time behind certain identifiable physio-
logical conditions that are strongly correlated with the decision ultimately made.
Experiments carried out at the Max Planck Institute for Human Cognitive and Brain
Sciences in Germany suggested that it was possible to detect that a person had al-
ready made a choice, and what that choice was, up to ten seconds before the person
in question was consciously aware of it [34]. Interpretation of such results is highly
controversial, and there is clearly more work to be done in this area. We have no
space to explore the issues here, but would end with four brief comments. First, we
see no significant conflict between the idea that our thought is determined by uncon-
scious “subcognitive” processes and the claim that we are genuinely free. To confine
ourselves to just one point from the familiar “compatibilist” arsenal of arguments,
the term “free choice” is one that we learn in ordinary life, and it would be perverse
to deny that paradigm cases of such choice (such as a child’s choosing a candy, with
which we started) are genuinely free — if these aren’t cases of free choice, then
we lose all purchase on the intended meaning of the term. Secondly, it is entirely
unsurprising that our conscious thinking should be found to correlate strongly with
certain events in the brain, and such correlation does not imply that “we” are not
really in control. On the contrary, neural processes are apparently the mechanism
by which we reason and make choices; that they determine our thoughts no more
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implies that “we” are not really thinking those thoughts than the transfer of visual
signals along the optic nerve implies that “we” are not really seeing things (or, for
that matter, that the electronic activity of its components implies that a computer is
not really calculating things). Thirdly, we would resist any suggestion that the neu-
rophysiological evidence points towards epiphenomenalism — the theory according
to which mind and mental states are caused by physical (brain and body) processes,
but are themselves causally inert (crudely but vividly, this takes the conscious mind
to be a passenger in the body, under the illusion that it is a driver). If evolution has
made us conscious of what we do, then it is overwhelmingly likely that this has some
causal payoff, for otherwise it would be an outrageous fluke — utterly inexplicable
in terms of evolutionary benefit or selection pressure — that our consciousness (e.g.
of pains, or sweet tastes) should correlate so well with bodily events [27, §5].

Finally, there could indeed be some conflict between our intuitive view of action
and the findings of neurophysiology if it turned out that even our most reflective
decisions are typically physiologically “fixed” at a point in time when we feel our-
selves to be consciously contemplating them. But given the implausibility of epiphe-
nomenalism, and the evident utility of conscious reflection in our lives, we consider
this scenario to be extremely unlikely (cf. [3, pp.42–3]).

3 Agency from the Third-Personal Perspective

Returning to the motivation that introduced this paper, suppose we are looking
around us, trying to make sense of what we see in the world. We see a wide range of
processes generating continual change, many of these closely associated with spe-
cific objects or systems. What standpoints can we adopt to try to understand these
processes? One possibility is to understand the behaviour of a system with reference
to what the philosopher Daniel Dennett calls the physical stance [12, p.36]. Put sim-
ply, the idea of the physical stance is to start with some original configuration, and
then use known laws of nature (physics, chemistry etc.) to predict how this system
will behave.

When I predict that a stone released from my hand will fall to the ground, I am using the
physical stance. [. . . ] I attribute mass, or weight, to the stone, and rely on the law of gravity
to yield my prediction. [12, p.37]

While the physical stance works well for simple cases such as this, it is of course
not practicable for understanding or predicting the behaviour of people, who are far
too complex to be understood in this way.

Another possibility is the design stance, which involves prediction of behaviour
based on our understanding of the purpose that a system is supposed to fulfil. Den-
nett gives the example of an alarm clock [12, pp.37–39]. When someone presents
us with an alarm clock, we do not need to make use of physical laws in order to
understand its behaviour. If we know it to be a clock, then we can confidently in-
terpret the numbers it displays as the time, because clocks are designed to display
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the time. Likewise, if the clock makes a loud and irritating noise, we can interpret
this as an alarm that was set at a specific time, because making loud and irritating
noises at specified times (but not otherwise) is again something that alarm clocks
are designed to do. No understanding of the clock’s internal mechanism is required
for such an interpretation (at least in normal cases) — it is justified sufficiently by
the fact that alarm clocks are designed to exhibit such behaviour.

Importantly, adopting the design stance towards some system does not require
us to consider it as actually designed, especially in the light of evolutionary theory.
Many aspects of biological systems are most easily understood from a design per-
spective, in terms of the adaptive functions that the various processes perform in
the life and reproduction of the relevant organism, treating these processes (at least
to a first approximation) as though they had been designed accordingly. The same
can also apply to adaptive computer systems, whose behaviour is self-modifying
through genetic algorithms or other broadly evolutionary methods. Understanding
such systems involves the design stance at two distinct levels: at the first level, their
overt behaviour — like that of biological systems — may be most easily predicted
in terms of the appropriate functions; while at the second level, the fact that they
exhibit such functional behaviour is explicable by their having been designed to
incorporate the relevant evolutionary mechanisms.

A third possible explanatory stance, and the one that most interests us here, is
what Dennett calls the intentional stance [11]. From this perspective, we attribute
mental states to entities and then use a common-sense theory of these mental states
to predict how the entity will behave, under the assumption that it makes choices
in accordance with its attributed beliefs and desires. The most obvious rationale
for this approach is that when explaining human activity, it is often useful to make
statements such as the following:

Janine believes it is going to rain.
Peter wants to finish his marking.

These statements make use of a folk psychology, by which human behaviour is pre-
dicted and explained through the attribution of attitudes, such as believing and want-
ing, hoping, fearing, and so on (see, for example, [35] for a discussion of folk psy-
chology). This style of explanation is entirely commonplace, and most people read-
ing the above statements would consider their meaning to be entirely clear, without
a second glance.

Notice that the attitudes employed in such folk psychological descriptions are
intentional notions: they are directed towards some form of propositional content.
In the above examples, the propositional content is respectively something like “it
is going to rain” and “finish my marking”, but although it is surprisingly hard to pin
down how such content should be characterised or individuated (especially when
it involves the identification or possibly misidentification of objects from different
perspectives [26, §5]), we need not worry here about the precise details. Dennett
coined the term intentional system to describe entities

whose behaviour can be predicted by the method of attributing belief, desires and rational
acumen [11, p.49]
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The intentional stance can be contrasted not only with the physical and design
stances, but also with the behavioural view of agency. The behavioural view —
most famously associated with B. F. Skinner — attempts to explain human action in
terms of stimulus-response behaviours, which are produced via “conditioning” with
positive and negative feedback. But as Pinker critically remarks,

The stimulus-response theory turned out to be wrong. Why did Sally run out of the building?
Because she believed it was on fire and did not want to die. [. . . ] What [predicts] Sally’s
behaviour, and predicts it well, is whether she believes herself to be in danger. Sally’s beliefs
are, of course, related to the stimuli impinging on her, but only in a tortuous, circuitous way,
mediated by all the rest of her beliefs about where she is and how the world works. [29,
pp.62–63]

In practice, then, the intentional stance is indispensable for our understanding of
other humans’ behaviour. But it can also be applied, albeit often far less convinc-
ingly, to a wide range of other systems, many of which we certainly would not wish
to admit as autonomous agents. For example, consider a conventional light switch,
as described by Shoham:

It is perfectly coherent to treat a light switch as a (very cooperative) agent with the capabil-
ity of transmitting current at will, who invariably transmits current when it believes that we
want it transmitted and not otherwise; flicking the switch is simply our way of communi-
cating our desires. [32, p.6]

However, the intentional stance does not seem to be an appropriate way of under-
standing and predicting the behaviour of light switches: here it is far simpler to
adopt the physical stance (especially if we are manufacturing light switches) or the
design stance (if we are an ordinary user, needing to know only that the switch is
designed to turn a light on or off). By contrast, notice that, at least as sketched by
Shoham, an intentional explanation of the switch’s behaviour requires the attribu-
tion to it of quite complex representational states, capable of representing not only
the flowing or absence of current, but also our own desires (which, on this story, it
acts to satisfy). So even if this intentional account provides accurate prediction of
the switch’s behaviour, it is wildly extravagant as an explanation: to attribute be-
liefs and desires to a switch is already implausible, but to attribute to it higher-order
beliefs and desires is well beyond the pale.

4 Higher-Order Intentionality

Human beings are in the unusual position of being both intentional agents in the
first-personal sense and also fertile ascribers of third-personal intentionality to other
entities. Although above we have described the intentional stance as a third-person
explanatory framework, that stance is not of course employed only by people of sci-
entific inclination: indeed the intentional stance comes very naturally — and often
far too naturally [27, §1] — to people in general.
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This human predilection for the intentional stance seems to be intimately bound
to our status as social animals. That is, the adaptive role of such intentional as-
cription seems to be to enable us to understand and predict the behaviour of other
agents in society. In navigating our way through this complex social web, we be-
come involved in higher-order intentional thinking, whereby the plans of individu-
als (whether ourselves or those we observe) are influenced by the anticipated inten-
tional behaviour of other agents. The value of such thinking is clear from its ubiquity
in human life and the extent to which we take it for granted in our communications.
Take for example the following fragment of conversations between Alice and Bob
(attributed by Baron-Cohen [2] to Pinker):

Alice: I’m leaving you.
Bob: Who is he?

The obvious intentional stance explanation of this scenario is simple, uncontrived,
and compelling: Bob believes that Alice prefers someone else to him and that she
is planning accordingly; Bob also wants to know who this is (perhaps in the hope
of dissuading her), and he believes that asking Alice will induce her to tell him. It
seems implausibly difficult to explain the exchange without appealing to concepts
like belief and desire, not only as playing a role in the agents’ behaviour, but also
featuring explicitly in their own thinking and planning.

Adoption of the third- (or second-) person intentional stance is also a key ingre-
dient in the way we coordinate our activities with each other on a day-by-day basis,
as Pinker illustrates:

I call an old friend on the other coast and we agree to meet in Chicago at the entrance of a
bar in a certain hotel on a particular day two months hence at 7:45pm, and everyone who
knows us predicts that on that day at that time we will meet up. And we do meet up. [. . . ]
The calculus behind this forecasting is intuitive psychology: the knowledge that I want to
meet my friend and vice versa, and that each of us believes the other will be at a certain
place at a certain time and knows a sequence of rides, hikes, and flights that will take us
there. No science of mind or brain is likely to do better. [29, pp.63–64]

All of this involves a mix of first- and higher-order intentional ascription, char-
acterised by Dennett as follows:

A first-order intentional system has beliefs and desires (etc.) but no beliefs and desires
about beliefs and desires. [. . .] A second-order intentional system is more sophisticated; it
has beliefs and desires (and no doubt other intentional states) about beliefs and desires (and
other intentional states) — both those of others and its own. [11, p.243]

The following statements illustrate these different levels of intentionality:

1st order: Janine believed it was raining.
2nd order: Michael wanted Janine to believe it was raining.
3rd order: Peter believed Michael wanted Janine to believe it was raining.

In our everyday lives, it seems we probably do not use more than about three layers
of the intentional stance hierarchy (unless we are engaged in an artificially con-
structed intellectual activity, such as solving a puzzle or complex game theory), and
it seems that most of us would probably struggle to go beyond fifth order reasoning.
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Interestingly, there is some evidence suggesting that other animals are capable of
and make use of at least some higher-order intentional reasoning. Consider the ex-
ample of vervet monkeys [10], which in the wild make use of a warning cry indicat-
ing to other monkeys the presence of leopards (a threat to the monkey community):

Seyfarth reports (in conversation) an incident in which one band of vervets was losing
ground in a territorial skirmish with another band. One of the losing-side monkeys, tem-
porarily out of the fray, seemed to get a bright idea: it suddenly issued a leopard alarm (in
the absence of any leopards), leading all the vervets to take up the cry and head for the trees
— creating a truce and regaining the ground his side had been losing. [. . . ] If this act is not
just a lucky coincidence, then the act is truly devious, for it is not simply a case of the vervet
uttering an imperative “get into the trees” in the expectation that all the vervets will obey,
since the vervet should not expect a rival band to honor his imperative. So either the leopard
call is [. . . ] a warning — and hence the utterer’s credibility but not authority is enough to
explain the effect, or our utterer is more devious still: he wants the rivals to think they are
overhearing a command intended only for his own folk. [10, p.347]

One can, of course, put forward alternative explanations for the above scenario,
which do not imply any higher-order intentional reasoning. But, nevertheless, this
anecdote (amongst others) provides tentative support for the claim that some non-
human animals engage in higher-order intentional reasoning. There are other exam-
ples: chimpanzees, for example, seem to demonstrate some understanding of how
others see them, a behaviour that is indicative of such higher-order reasoning.

4.1 Higher-Order Intentionality and Species Intelligence

While there is evidence that some other animals are capable of higher-order inten-
tional reasoning to a limited extent, there seems to be no evidence that they are
capable of anything like the richness of intentional reasoning that humans routinely
manage. Indeed, it is tempting to take the widespread ability to reason at higher or-
ders of intentionality as a general indicator of species intelligence. This idea, as we
shall see, can be given further support from Robin Dunbar’s work on the analysis of
social group size in primates [13].

Dunbar was interested in the following question: Why do primates have such
large brains (specifically, neocortex size), compared with other animals? Ultimately,
the brain is an (energetically expensive) information processing device, and so a
large brain would presumably have evolved to deal with some important informa-
tion processing requirement for the primate. But what requirement, exactly? Dunbar
considered a number of primates, and possible factors that might imply the need for
enhanced information processing capacity. For example, one possible explanation
could be the need to keep track of food sources in the primate’s environment. An-
other possible explanation could be the requirement by primates with a larger rang-
ing or foraging area to keep track of larger spatial maps. However, Dunbar found
that the factor that best predicted neocortex size was the primate’s mean group size:
the average number of animals in social groups. This suggests that the large brain
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size of primates is needed to keep track of, maintain, and exploit the social relation-
ships in primate groups.

Dunbar’s research suggests a tantalising question: given that we know the aver-
age human neocortex size, what does his analysis predict as being the average group
size for humans? The value obtained by this analysis is now known as Dunbar’s
number, and it is usually quoted as 150. That is, given the average human neocortex
size and Dunbar’s analysis of other primates, we would expect the average size of
human social groups to be around 150. Dunbar’s number would remain a curiosity
but for the fact that subsequent research found that this number has arisen repeatedly,
across the planet, in terms of human social group sizes. For example, it seems that
neolithic farming villages typically contained around 150 people. Of more recent
interest is the fact that Dunbar’s number has something to say about Internet-based
social networking sites such as FaceBook. We refer the reader to [14] for an infor-
mal discussion of this and other examples of how Dunbar’s number manifests itself
in human society.

If species neocortex size does indeed correlate strongly with social group size,
then the most likely evolutionary explanation seems to be precisely the need for,
and adaptive value of, higher-order intentional reasoning within a complex society.
Whether hunting in groups, battling with conflicting tribes, pursuing a mate (per-
haps against rivals), or gaining allies for influence and leadership (with plentiful
potential rewards in evolutionary fitness), the value of being able to understand and
anticipate the thinking of other individuals is obvious. We have already seen how
higher-order intentional reasoning plays an important role in relationships between
humans, to the extent that we routinely take such reasoning for granted in mutual
communication. This being so, it is only to be expected that larger social groups
would make more demands of such reasoning, providing an attractive explanation
for the relationship with neocortex size that Dunbar identified (cf. his discussion
in [14, p.30]). This is further corroborated by evidence that higher-order intentional
reasoning capabilities are approximately a linear function of the relative size of the
frontal lobe of the brain [14, p.181], which seems to be peculiar to primates, and is
generally understood as that part of the brain that deals with conscious thought.

5 The Human Intentional System

In this section, we briefly review a model of the human intentional system. The
model was proposed by Simon Baron-Cohen [2], an evolutionary psychologist in-
terested in understanding of what he calls “mindreading” — the process by which
humans understand and predict each other’s mental states. A particular interest of
Baron-Cohen’s is the condition known as autism, which we will discuss in more
detail below.

Baron-Cohen’s model of the human intentional system is composed of four main
modules — see Figure 1. Broadly speaking, the model attempts to define the key
mechanisms involved in going from observations of processes and actions in the
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Fig. 1 Baron-Cohen’s model of human intentional systems [2, p.32].

environment, through to predictions and explanations of agent behaviour. The four
components of the model are as follows:

• the Intentionality Detector (ID);
• the Eye Direction Detector (EDD);
• the Shared Attention Mechanism (SAM); and
• the Theory of Mind Mechanism (ToMM).

The role of the Intentionality Detector (ID) is to:

[I]nterpet motion stimuli in terms of the primitive volitional mental states of goal and desire.
[. . . ] This device is activated whenever there is any perceptual input that might identify
something as an agent. [. . . ] This could be anything with self-propelled motion. Thus, a
person, a butterfly, a billiard ball, a cat, a cloud, a hand, or a unicorn would do. Of course,
when we discover that the object is not an agent — for example, when we discover that
its motion is not self-caused, we can revise our initial reading. The claim, however, is that
we readily interpret such data in terms of the object’s goal and/or desire. [. . . ] ID, then, is
very basic. It works through the senses (vision, touch, audition), [. . . and it will] interpret
almost anything with self-propelled motion, or anything that makes a non-random sound,
as an agent with goals and desires. [2, pp.32–33].

The output of the ID is primitive dyadic (two-place) intentional ascriptions, such as:

• She wants to stay dry.
• It wants to catch the wildebeest.

At broadly the same level as ID in Baron-Cohen’s model is the Eye Direction
Detector (EDD). In contrast to ID, which works on multiple types of perceptual
input, the EDD is focussed around vision. The basic role is as follows:
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BOX

Fig. 2 The SAM builds triadic representations, such as “you and I see that we are looking at the
same object” [2, p.45].

EDD has three basic functions: it detects the presence of eyes or eye-like stimuli, it com-
putes whether eyes are directed towards it or toward something else, and it infers from
its own case that if another organism’s eyes are directed at something then that organism
sees that thing. The last function is important because it [makes it possible to] attribute a
perceptual state to another organism (such as “Mummy sees me”). [2, pp.38-39]

Dyadic representations such as those above provide a foundation upon which
richer intentional acriptions might be developed, but they simply capture an attitude
that an agent has to a proposition, and in this they are of limited value for under-
standing multi-agent interactions. The purpose of the Shared Attention Mechanism
(SAM) is to build nested, triadic representations. Figure 2 illustrates a typical tri-
adic representation: “You and I see that we are looking at the same object”. Other
examples of triadic representations include:

• Bob sees that Alice sees the gun.
• Alice sees that Bob sees the girl.

The Theory of Mind Mechanism (ToMM) is the final component of Baron-
Cohen’s model:

ToMM is a system for inferring the full range of mental states from behaviour — that is, for
employing a “theory of mind”. So far, the other three mechanisms have got us to the point
of being able to read behaviour in terms of volitional mental states (desire and goal), and to
read eye direction in terms of perceptual mental states (e.g., see). They have also got us to
the point of being able to verify that different people can be experiencing these particular
mental states about the same object or event (shared attention). But a theory of mind, of
course, includes much more. [2, p.51]
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Thus, the ToMM goes from low-level intentional ascriptions to richer nested models.
It is the ToMM to which we must appeal in order to understand Bob’s question “Who
is he?” when Alice says “I’m leaving you.”

Baron-Cohen probably does not intend us to interpret the word “theory” in the
ToMM to mean a theory in any formal sense (e.g., as a set of axioms within some
logical system). However, this suggests an intriguing research agenda: To what ex-
tent can we come up with a logical ToMM, which can model the same role as the
ToMM that we all have? While progress has been made on studying idealised as-
pects of isolated components of agency, such as knowledge [21, 15], attempting to
construct an integrated theory of agency is altogether more challenging. We refer
the reader to [9, 37, 38] for discussion and detailed references.

5.1 Autism

It is illuminating to consider what the consequences would be if some of the mecha-
nisms of a fully-fledged intentional system were damaged or malfunctioning. Baron-
Cohen hypothesises that the condition known as autism is a consequence of impair-
ments in the higher-order mechanisms of the human intentional system: the SAM
and/or ToMM. Autism is a serious, widespread psychiatric condition that manifests
itself in childhood:

The key symptoms [of autism] are that social and communication development are clearly
abnormal in the first few years of life, and the child’s play is characterized by a lack of
the usual flexibility, imagination, and pretense. [. . . ] The key features of the social abnor-
malities in autism [. . . ] include lack of eye contact, lack of normal social awareness or
appropriate social behaviour, “aloneness”, one-sideness in interaction, and inability to join
a social group. [2, pp.62–63]

Baron-Cohen argues that autism is the result of failures in the higher-order compo-
nents of the human intentional system described above, i.e., those mechanisms that
deal with triadic representations and more complex social reasoning: the SAM and
ToMM. He presents experimental evidence to support the claim that the ID and EDD
mechanisms are typically functioning normally in children with autism [2]. For ex-
ample, they use explanations such as “she wants an ice cream” and “he is going to
go swimming” to explain stories and pictures, suggesting that the ID mechanism is
functioning (recall that the role of the ID mechanism is to interpret apparently pur-
poseful actions in terms of goals and desires). Moreover, they are able to interpret
pictures of faces and make judgements such as “he is looking at me”, suggesting
that the EDD mechanism is functioning. However, autistic children seem unable to
engage in shared activities, such as pointing to direct the gaze of another individual,
suggesting that the SAM is not functioning properly. Finally, experiments indicate
that autistic children have difficulty reasoning about the mental states of others, for
example, trying to understand what others believe and why. Baron-Cohen takes this
as a failure of the ToMM.
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TABLE
A
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B

On(A,Table) 
On(C,A)  
On(B,Table) 
Clear(C) 
Clear(B)
Empty(Hand)
...
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actuators

Δ

∀ x Holding(x) → 
Do(placeOn(x,Table))

R

Fig. 3 An artificial agent that decides what to do via logical reasoning.

To evaluate Baron-Cohen’s theory, consider how individuals with an impaired
higher-order intentional system would behave. We might expect them to have dif-
ficulty in complex social settings and in predicting how others will react to their
actions, to struggle when attempting to engage in group activities; and so on. And
indeed, it seems these behaviours correlate well with the observed behaviours of
autistic children.

6 Agency and Artificial Intelligence

Our discussion thus far has been divorced from the question of how we might ac-
tually build computer systems that can act as autonomous agents, and how far con-
sideration of the nature of human agency can yield insights into how we might go
about doing this. This question is of course central to the discipline of artificial intel-
ligence — indeed one plausible way of defining the aim of the artificial intelligence
field is to say that it is concerned with building artificial autonomous agents [30].

We start by considering the logicist tradition within artificial intelligence, which
was historically very influential. It dates from the earliest days of artificial intelli-
gence research, and is perhaps most closely associated with John McCarthy (the
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man who named the discipline of artificial intelligence — see, e.g., [24] for an
overview of McCarthy’s programme). As the name suggests, logic and logical rea-
soning take centre stage in the logicist tradition, whose guiding theme is that the
fundamental problem faced by an agent — that of deciding what action to perform
at any given moment — is reducible to a problem of purely logical reasoning. Fig-
ure 3 illustrates a possible architecture for a (highly stylized!) logical reasoning
agent (cf. [16, pp.307–328]):

• The agent has sensors, the purpose of which is to obtain information about the
agent’s environment. In contemporary robots, such sensors might be laser range
finders, cameras, and radars, and GPS positioning systems [36].

• The agent has effectors, through which it can act upon its environment (e.g., robot
arms for manipulating objects, wheels for locomotion).

• The two key data structures within an agent are a set ∆ of logical formulae,
which represent the state of the agent, and a set of rules, R, which represent the
theory of the agent. The set ∆ will typically include information about the agent’s
environment, and any other information recorded by the agent as it executes. The
rule set R will typically include both a background theory (e.g., information such
as “if an object is on top of a block, then that block is not clear”) and a theory of
rational choice for the agent.

• Transducers transform raw sensor data into the symbolic logical form of ∆ . Sim-
ilarly, they map software instructions issued by the robot to commands for the
actuators and effectors of the robot.

• A general-purpose logical reasoning component enables the agent to apply rules
R to the agent’s database ∆ to derive logical conclusions; we also assume this
component handles updating of ∆ in the face of new sensor data, etc.

The agent continually executes a sense-reason-act loop, as follows:

• Sense: The agent observes its environment through its sensors, and after appro-
priate processing by transducers, this provides potentially new information in
logical form; this new information is then incorporated into the agent’s represen-
tation ∆ .

• Reason: The reasoning component of the agent then tries to prove a sequent of the
form ∆ `R Do(α), where α is a term that will correspond to an action available
to the agent (e.g., an action with the robot arm). The idea is that, if the agent
is able to prove such a sequent, then assuming the agent’s representation ∆ is
correct, and the rules R have been constructed appropriately, then α will be the
appropriate (“optimal”) action for the agent to take.

• Act: At this point, the action α selected during the previous phase stage is exe-
cuted.

Thus, the “program” of the agent is encoded within its rules R. If these rules are
designed appropriately, and if the various subsystems of the agent are operating
correctly, then the agent will independently select an appropriate action to perform
every time it cycles round the sense-reason-act loop.

The idea of building an agent in this way is seductive. The great attraction is that
the rules R explicitly encode a theory of rational action for our agent. If the theory
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is good, then the decisions our agent makes will also be good. However, there are
manifold difficulties with the scheme, chief among them being the following (see,
e.g., [4] for a detailed discussion):

• The problem of representing information about complex, dynamic, multi-agent
environments in a declarative logical form.

• The problem of translating raw sensor data into the appropriate declarative logi-
cal form, in time for this information to be of use in decision-making.

• The problem of automating the reasoning process (i.e., checking whether ∆ `R
Do(α)), particularly when decisions are required promptly.

Despite great efforts invested into researching these problems over the past half cen-
tury, they remain essentially unsolved in general, and the picture we paint above of
autonomous decision-making via logical reasoning does not represent a mainstream
position in contemporary artificial intelligence research. Indeed, in the late 1980s
and early 1990s, many researchers in artificial intelligence began to reject the logi-
cist tradition, and began to look to alternative methods for building agents (see [8]
for a detailed discussion of alternative approaches to artificial agency by Rodney
Brooks, one of the most prominent and outspoken researchers against the logicist
tradition and behind alternative proposals for building agents, and see [39] for a
discussion and detailed references).

Before we leave the logicist tradition of artificial intelligence, it is interesting to
comment on the status of the logical representation ∆ within an agent. The database
∆ intuitively contains all the information that the agent has gathered and retained
from its environment. For example, referring back to Figure 3, we see that the agent
has within its representation ∆ the predicate On(A,Table); and we can also see
that indeed the block labelled “A” is in fact on top of the table. It is therefore very
tempting to interpret ∆ as being the beliefs of the agent, and thus that the agent
believes block “A” is on the table. Under this interpretation, the presence of a pred-
icate P(a,b) in ∆ would mean that “the agent believes P(a,b)”, and we would be
inclined to say the agent’s belief was correct if, when we examined the agent’s en-
vironment, we found that the object a stood in relation P to object b (this assumes,
of course, that we know what objects/relations a, b, and P are supposed to denote
in the environment: the agent designer can presumably give us this mapping). See
Konolige [22] for a detailed discussion of this subject.

6.1 A Refinement: Practical Reasoning Agents

The practical difficulties in attempting to realise the vision of autonomous agents
have led researchers to explore alternatives, and such exploration can also be moti-
vated by the consideration that we don’t seem to make decisions in that way! While
there are surely occasions when many of us use abstract reasoning and problem
solving techniques in deciding what to do, it is hard to imagine situations in which
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our decision-making is realised via logical proof. An alternative is to view decision-
making in autonomous agents as a process of practical reasoning: reasoning di-
rected towards action, rather than beliefs. That is, practical reasoning changes our
actions, while theoretical reasoning changes our beliefs [6]:

Practical reasoning is a matter of weighing conflicting considerations for and against
competing options, where the relevant considerations are provided by what the agent de-
sires/values/cares about and what the agent believes. [7, p.17]

Bratman [7] distinguishes two processes that take place in practical reasoning: delib-
eration and means-ends reasoning. Deliberation is the process of deciding what we
want to achieve. As a result of deliberating, we fix upon some intentions: commit-
ments to bring about specific states of affairs. Typically, deliberation involves con-
sidering multiple possible candidate states of affairs, and choosing between them.
The second process in practical reasoning involves determining how to achieve the
chosen states of affairs, given the means available to the agent; this process is hence
called means-ends reasoning. The output of means-ends reasoning is a plan: a recipe
that can be carried out by the agent, such that after the plan is carried out, the in-
tended end state will be achieved.

Thus, after practical reasoning is completed, the agent will have chosen some
intentions, and will have a plan that is appropriate for achieving these intentions.
Under normal circumstances, an agent can proceed to execute its chosen plans, and
the desired ends will result. The following practical syllogism provides a link be-
tween beliefs, intentions, plans, and action:

If I intend to achieve φ and
I believe plan π will accomplish φ

Then I will do π .

The practical reasoning model has been hugely influential within the artificial intelli-
gence community (see, e.g., [1, 18]). A typical architecture for a practical reasoning
agent is illustrated in Figure 4. The agent has three key data structures, which, as
in the logicist tradition, are symbolic/logical representations. The agent’s beliefs are
a representation of the agent’s environment; the agent’s goal represents a state of
affairs that the agent is currently committed to bringing about, and the agent’s plan
is a sequence of actions that the agent is currently executing. If the agent’s beliefs
are correct, and the plan is sound, then the execution of the plan will result in the
accomplishment of the goal [23].

Architectures of the type shown in Figure 4 are often referred to as belief-desire-
intention (BDI) architectures. In this context, “desire” is usually considered as an
intermediate state: the agent has potentially many conflicting desires, but chooses
between them to determine the goal or intention that it will then fix on. In the BDI
model, the sense-reason-act decision-making loop is modified as follows [38]:

• Sense: Observe the environment, and update beliefs on the basis of observations.
• Option generation: Given the current beliefs and intentions of the agent, deter-

mine what options are available, i.e., those states of affairs that the agent could
usefully commit to bringing about.
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TABLE
A
C

B

Beliefs:
On(A,Table) ^ On(C,A) ^ 
On(B,Table) ^ Clear(C)^ 
Clear(B) ^ Empty(Hand)

Intention/Goal:
On(A,Table) ^ On(B,A) ^ On(C,B)

Current Plan:
pickup(C); placeOn(C,Table); 
pickup(B); placeOn(B,A); 
pickup(C); placeOn(C,B)

sensors
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A
S
O
N
E
R

actuators

Fig. 4 A practical reasoning agent.

• Filtering: Given the current beliefs, desires, and intentions of the agent, choose
between competing options and commit to one. The chosen option becomes the
agent’s current intention.

• Means-Ends Reasoning: Given the current beliefs and intentions of the agent,
find a plan such that, when executed in an environment where the agent’s beliefs
are correct, the plan will result in the achievement of the agent’s intentions.

• Action: Execute the plan.

Various refinements can be made to this loop (e.g., so that an agent is not assumed to
execute the entire plan before observing its environment again) [38], and of course
the picture can be complicated considerably to take account of uncertainties and
interaction with complex and changing situations (including game-theoretical con-
sideration of the planning and behaviour of other agents).

The practical reasoning/BDI paradigm suffers from many of the same difficul-
ties that beset the logicist paradigm. For example, the assumption of a logical rep-
resentation of the agent’s beliefs implies the need for transducers that can obtain
logical representations from raw sensor data. In addition, the means-ends reason-
ing problem is computationally complex for logical representations of even mod-
est richness [18]. However, various refinements permit efficient implementations of
the architecture; perhaps the best known is the reactive planning class of architec-
tures [17, 5]. The basic idea in such architectures is that the agent is equipped with
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a collection of plans, generated by the agent designer, which are labelled with the
goals that they can be used to achieve. The means-ends reasoning problem then re-
duces to the comparatively tractable problem of searching through the plan library
to try to find a plan that is suitable for the current intention.

Of course, one could now ask to what extent such an agent is genuinely au-
tonomous, when in a sense “all it is doing” is assembling and executing plans made
up of pre-compiled plan fragments. Such questions raise deep philosophical issues
that we cannot address fully now, but here is a sketch of a response. First, there is
much to be said for the idea that autonomy is a matter of degree: everything that
we do is subject to constraints of various sorts (of ability, cost, law, physical possi-
bility etc.), and all of these can vary in countless ways that extend or limit how far
things are “under our control”. Secondly, the autonomy attributable to a human —
and by extension a computer system — depends in part on how far the reasoning
employed in deciding on a course of action is “internal” to the agent: if the agent is
performing a complex calculation, taking into account the various constraints and
aims within a range of flexible possibilities, this demonstrates far more autonomy
than an agent that is simply following orders without any internal reasoning or se-
lection of choices. Thirdly, it follows that autonomy correlates quite strongly with
the extent to which application of the third-person intentional stance assists in deep
understanding and prediction of the system’s behaviour. Some researchers, inspired
by the utility of this view of such systems, have proposed the idea of agent-oriented
programming, in which intentional stance notions such as belief, desire, and inten-
tion are first-class entities in a programming language for autonomous agents [33].

7 Conclusions

Our discussion has revealed many ways in which research on agency has led to a
convergence in our understanding of human and of artificial agents. In both, the folk-
psychological intentional stance — in terms of attributed beliefs and desires — has
clear predictive value, and in both, our attempts at a deeper understanding that goes
beyond folk psychology has led to plan-based models that shed light on our own
behaviour, and also point the way towards practical development of artificial agents.
Whether we should describe such an artificial system as a genuine “agent” and as
having literal “beliefs” and “desires” is, of course, controversial. But when a system
is sufficiently sophisticated that its behaviour can only feasibly be understood or
predicted in terms of belief-like, desire-like, and plan-like states and the interplay
between those (rather than purely in terms of simple execution of pre-packaged
instructions), we think there is a lot to be said for extending the boundaries of our
concepts accordingly. As Millican [27, §3–4] has argued in the case of artificial
intelligence, the development of such systems has faced us with a new problem
which is not anticipated by the established boundaries of our traditional concepts.
The concept of “agency”, like that of “intelligence” is open textured, and how we
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mould it within this new context is largely a matter of decision, rather than mere
analysis of our pre-existing conceptual repertoire.

There are several possible avenues for future research. One interesting open prob-
lem remains the extent to which we can develop formal theories that can predict and
explain the behaviour of human agents; another is the extent to which we can link
such formal theories with computer programs, in order to provide an account of
their behaviour in terms of agentive concepts such as beliefs, desires, and rational
choice.
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