
Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Computer Science and
Philosophy, TT 2018

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford
2

Role of the Course

This course is part of the “Introduction to
Philosophy” for Prelims in Computer
Science and Philosophy.
– The 3-hour examination will contain six

“either … or” questions on “General
Philosophy” and six questions on Turing.

– Students must answer four questions,
including at least one from each half of the
paper (so between one and three on Turing).

3

Overall Plan of the Lectures

Lecture 1: Types of number, Cantor, infinities,
diagonal arguments

Lecture 2: Hilbert’s Programme, Gödel’s Theorem

Lectures 3-5: The 1936 paper, “On Computable
Numbers, with an Application to the
Entscheidungsproblem”, which
introduced the Turing Machine.

Lectures 6-8: The 1950 paper, “Computing
Machinery and Intelligence”, which
introduced the Turing Test.

4

Supporting Textbook

Charles Petzold, The
Annotated Turing, contains
“everything you need to know”
on the background and the
classic 1936 paper.

It reproduces the original
paper, together with extensive
explanation and discussion.

With its help, you should aim
to read and understand
Turing’s entire paper.

5

Highly Recommended Reading
– Andrew Hodges, Alan Turing: The Enigma of

Intelligence (Hutchinson, 1983, 586 pp.)
An excellent biography by a Fellow of Wadham.

– Andrew Hodges, Turing: A Natural Philosopher
(Phoenix, 1997, 58 pp.)

Well worth reading for a quick overview and insights into
Turing’s life and thought.

– S. Barry Cooper and Jan van Leeuwen (eds), Alan
Turing: His Work and Impact (Elsevier, 2013, 914 pp.)

Very rich collection of Turing’s work with commentary from
philosophers, mathematicians, computer scientists etc.

– Ernest Nagel and James R. Newman, Gödel’s Proof
(RKP, 1959 & 1971, 118 pages)

Lucid and approachable presentation of Gödel’s theorem.
6

Alan Turing

Turing was born in London on June 23, 1912,
and educated at Hazelhurst and Sherborne
Schools (while his parents lived in India, his
father working in the Indian Civil Service).

He was shy, but formed a close relationship with
Christopher Morcom. In 1929, both applied to
read Mathematics at Trinity College, Cambridge:
Morcom was accepted, but Turing was not.

Morcom seems to have been Turing’s first love;
he tragically died of tuberculosis (in February
1930), with profound effects on Turing.

1 2

3 4

5 6

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

7

(Later in his life, despite his heroic – but largely
unknown – decryption of Nazi Enigma codes
during the War, Turing was prosecuted for homo-
sexuality, subsequently killing himself in 1954.)

Turing reapplied to Cambridge in 1930, and was
accepted for King’s College, going up in 1931.

In May/June 1934, Turing took his Part II Tripos
examinations, passing with Distinction and
winning a King’s College research studentship. In
1935, he was elected to a 3-year fellowship.

In Spring 1935, Turing attended a Part III course
by Max Newman, on the Foundations of
Mathematics, largely inspired by David Hilbert …

8

David Hilbert (1862-1943)

Hilbert (born Königsberg) was perhaps
the most influential mathematician
of the early 20th century.

He developed the formalist approach
to the philosophy of mathematics,
which sees mathematics as involving
manipulation of symbols according to an agreed set
of formal rules, and starting from given axioms.

At the 1900 Paris International Congress of
Mathematicians, Hilbert famously listed the most
prominent unsolved problems of mathematics.

9

Hilbert’s Tenth Problem

Hilbert’s list later grew to 23, including:
10. Determination of the Solvability of a

Diophantine Equation
Given a diophantine equation with any number of
unknown quantities and with rational integral
numerical coefficients: To devise a process
according to which it can be determined by a finite
number of operations whether the equation is
solvable in rational integers.

* For lucid discussion of this problem and the history of
its (dis-) solution, see Petzold, chapters 1 and 18.

10

Diophantine Equations

These are named after problems discussed by the
3rd century Alexandrian mathematician Diophantus,
often called “the father of algebra” though some of
his methods were actually Babylonian.

Diophantine equations are polynomial equations
(which may have many, or no solutions) whose
solutions must be integers. The most famous are
associated with Fermat’s “Last Theorem”:

𝑥 + 𝑦 = 𝑧

Fermat claimed to have a proof that there are no
integer solutions if n>2. This “theorem” was finally
proved by Andrew Wiles (Merton College) in 1995.

11

Some of Hilbert’s Other Problems

1. The continuum hypothesis: = 2 ?

This asks whether the second transfinite number is
the cardinality of the continuum – see Petzold p. 32.
It has since been shown to be neither provable nor
disprovable within standard set theory.

2. Prove the consistency of arithmetic axioms;
See Petzold p. 46, and discussion below.

8. Riemann hypothesis and other problems
including Goldbach’s Conjecture;

Goldbach is mentioned by Petzold on p. 47.

Hilbert’s Formalist Challenges

In 1921 Hilbert set out his famous “programme” in
the foundations of mathematics, later extended:

– 1921: To establish mathematics on a solid and
provably consistent foundation of axioms, from which,
in principle, all mathematical truths can be deduced (by
the standard rules of first order predicate logic).

– 1928: the Entscheidungsproblem or “decision problem”:
can an effective procedure be devised which would
demonstrate – in a finite time – whether any given
mathematical proposition is, or is not, provable from a
given set of axioms?

12

7 8

9 10

11 12

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

13

Turing’s 1936 Paper:

“On Computable Numbers, with an
Application to the Entscheidungsproblem”

Turing’s classic paper, which introduced the
Turing Machine, is the main focus of these
lectures. It settled Hilbert’s decision problem
(by showing that it cannot be solved).

But the paper starts from the concept of a
“computable number”, and in order to put this
in context, we must first understand several
other types of number …

14

Various Types of Number

All of the following sets of numbers are
standardly used in mathematics:

– Natural numbers 1, 2, 3, 4, … (set ℕ), which is a
subset of the set of integers (set ℤ);

– Rational numbers, fractions of integers (set ℚ);
– Real numbers (set ℝ), which include also:

Irrational numbers, which are not rational;
Algebraic numbers, roots of algebraic equations;
Transcendental numbers, which are not algebraic;

– Complex numbers (set ℂ) need not concern us.

15

Various Types of Infinity

Georg Cantor (1845-1918)
developed set theory and
the theory of transfinite
cardinal numbers.

His work implies that we
must recognise more than
one “infinite number”.

The key to understanding such numbers is
widely known as “Hume’s Principle” …

16

Frege cites “Hume’s Principle”

“… When we have … acquired a means of arriving
at a determinate number and of recognizing it again
as the same, we can assign it a number word as its
proper name.

§63. HUME long ago mentioned such a means:
‘When two numbers are so combined as that the
one has always an unit answering to every unit of
the other, we pronounce them equal.’ …”

Frege, Foundations of Arithmetic
(1884, translated by J. L. Austin 1950),

referring to Hume’s Treatise 1.3.1.5

17

One-to-one Correspondence

Making Hume’s principle a bit more precise,
we shall say that two sets have the same
cardinality if, and only if, a bijective function (or
bijection, or one-to-one correspondence) can
be defined between them.

Such a function is both one-to-one (or injective:
distinct elements of the domain are never
mapped to the same element of the codomain)
and onto (or surjective: the range/image of the
function is the entire codomain).

18

An Injective Function – no two arrows “hit” the same target

A Surjective Function – every element of the codomain is “hit”

13 14

15 16

17 18

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

19

Making Do With Surjectivity

When dealing with infinite sets, rather than
attempting to define a bijection, we often
make do with the principle that if we can
define a surjective function:

F : A B

then A must be “at least as big” as B; or in
terms of cardinalities, |A| |B|. (Intuitively, A
must provide enough “arrows” to hit all of B.)

Surjections in both directions would imply

(|A| |B|) (|B| |A|) |A| = |B|
20

Enumerability / Countability

If a surjection can be defined from the set of
natural numbers ℕ to set A, then we say that
A is countable or enumerable (i.e. they can in
principle be enumerated, or put in a list).

Here, following Petzold (and tradition), we
take the natural numbers to start from 1
(rather than from 0, as many authors do).

Georg Cantor proved that the set of rational
numbers ℚ and the set of algebraic numbers
are both enumerable.

21

Rational Numbers

A rational number is a number that can be
expressed as a fraction of integers.

Expressed as a decimal, a number is
rational if and only if that decimal eventually
recurs (i.e. repeats infinitely), e.g. 3.000…
or 7.5000… or 0.666… or 0.367367367…

To convert to a fraction, sum the series:

0.367367367 … = + + + ⋯

= × [using the formula “𝑎 (1 − 𝑟)⁄ ”]
22

Rational Numbers are Enumerable
Set out the fractions of positive integers in a
grid, and define a surjection F : ℕℚ following
the line: F (1) = ⁄ , F (2) = ⁄ , F (3) = ⁄ , etc.

⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …

⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …

⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …

⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
…

23

We thus list all of the fractions in the array,
starting ⁄ , ⁄ , ⁄ , ⁄ , ⁄ , ⁄ , ⁄ …

So our surjection maps 1 to the 1st of these,
2 to the 2nd, 3 to the 3rd, and so on.

Curiously, every fraction (including all the
natural numbers ⁄ , ⁄ etc.) will appear
in this list an infinite number of times, e.g.
⁄ will appear again as ⁄ , ⁄ , ⁄ etc.

If we want to include negative fractions, we
can alternate: ⁄ , ⁄ , ⁄ , ⁄ , ⁄ etc.
(and we could start with 0 if desired).

24

2 is Not Rational

Suppose that 2 = , where m and n are

integers with no common factors.

Squaring, 2 = , so 2𝑛 = 𝑚 , and 𝑚 is even.

But any odd number (e.g. 2k+1) has an odd square
(4𝑘 +4k+1), so m cannot be odd, i.e. m is even.

Therefore m = 2k, for some integer k.

Hence 2𝑛 = 𝑚 = 4𝑘 , and 𝑛 is even.

So n is even too, meaning that m and n have
the factor 2 in common … CONTRADICTION!!

19 20

21 22

23 24

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

25

Algebraic Numbers
An algebraic number is any number that
can be a solution (or “root”) of an equation
in one variable with integer coefficients
(these are called algebraic equations).

Any rational number is straightforwardly
algebraic, since ⁄ (𝑎 & b integers) is the
solution to the equation bx = 𝑎.

Any square root or n th root of a rational
number is algebraic, being a solution to
some equation of the form b𝑥 = 𝑎.

26

Algebraic Numbers are Enumerable

We define, for any algebraic equation
𝑎 𝑥 + 𝑎 𝑥 + … + 𝑎 𝑥 + 𝑎 = 0

the rank (or height) of the equation as:
𝑛 + |𝑎 | + |𝑎 | + … + |𝑎 | + |𝑎 |

Since all the coefficients and powers are
integers, clearly there are a finite number
of algebraic equations of any given rank 𝑟.

These can be ordered, e.g. first by 𝑛, then
by 𝑎 , then by 𝑎 , …, finally by 𝑎 .

27

So now we can put all possible algebraic
equations in order, starting like this:

Rank 2:

−𝑥 + 0 = 0, 𝑥 + 0 = 0

Rank 3:
−2𝑥 + 0 = 0, −𝑥 − 1 = 0, −𝑥 + 1 = 0,

𝑥 − 1 = 0, 𝑥 + 1 = 0, 2𝑥 + 0 = 0,

−𝑥 + 0 = 0, 𝑥 + 0 = 0

Rank 4:
−3𝑥 + 0 = 0, −2𝑥 − 1 = 0, −2𝑥 + 1 = 0,

… 28

Each algebraic equation has at most 𝑛 solutions
(where 𝑛 is the highest power of 𝑥 in the equation);
and we can arrange these in numerical order.*

So now we can make a list that will include all the
algebraic numbers, ordered first by the equation to
which they are a solution (as explained earlier),
and then by the value of the solution.

As before, we can define a surjection from ℕ
which maps 1 to the 1st in the list, 2 to the 2nd, 3 to
the 3rd, and so on. QED! (The Latin “quod erat
demonstrandum” means “what was to be proved”.)

* If complex numbers were to be included, we could order
the solutions first by real part, then by imaginary part.

29

Transcendental Numbers

A transcendental number is a number
which is not algebraic – so it is not a
solution to any algebraic equation.

𝜋 and 𝑒 are both transcendental, as are
sin (𝛼), cos (𝛼), and tan (𝛼), for any non-
zero algebraic value of 𝛼.*

Likewise ln (𝑎) and 𝑎 if 𝑎 is algebraic (and
not 0 or 1), and 𝑏 is irrational algebraic.

* Note that 𝛼 represents an angle in radians, not degrees.
30

Real Numbers are Not Enumerable

Suppose that the set of real numbers ℝ is
enumerable. Then all 𝑥 ∈ ℝ (where
0 < 𝑥 < 1) can be put into an infinite list:

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

… …

25 26

27 28

29 30

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

31

Diagonalisation

Consider now the number c (for Cantor) that
we get if we take the digits in order down the
long diagonal of this list, adjusting them so that
always 𝑐 ≠ 𝑎 , e.g. using this simple rule:

If 𝑎 =5, then 𝑐 =0, otherwise 𝑐 =5.

Clearly the number c will differ from the n th

number in the list at the n th decimal place, for
all n. Hence c is a real number between 0
and 1 that does not occur in the list of all such
numbers … CONTRADICTION!!

32

Cantor’s “diagonal” argument was the first example
of a clever type of argument that works by taking
two dimensions of variation and then providing
some construction that runs “down the diagonal”.

Another famous example is the proof of Cantor’s
Theorem that for any set A, the power set ℘(A) or
2 , i.e. the set of all subsets of A, always has a
greater cardinality than A itself.

– This is obvious for finite sets (where a set of n
objects has 2 possible subsets), but Cantor
proved that it is true for all sets, deriving a
contradiction from the assumption of a surjective
function from any set to its power set.

33

Suppose F is a surjection from A to ℘(A), where A is
any enumerable set, then we list A’s elements horiz-
ontally, and their corresponding subsets vertically,
with ticks or crosses showing set membership:

A[1] A[2] A[3] A[4] …

F (A[1]) …

F (A[2]) …

F (A[3]) …

F (A[4]) …

Now consider the set of elements that have crosses
down the long diagonal. Where is this set in the list?
It should have a cross where there is a tick on the
long diagonal, and a tick where there is a cross. So it
differs in the n th place from the n th set in the list. 34

An Infinity of Infinities
The proof of Cantor’s Theorem does not rely on
enumerability of the domain of F , and can work
without the explicit diagonalisation, if we simply
consider the set:

S = { 𝑥∈𝐴: 𝑥∉F (𝑥)}

S cannot be in the range of F , because
if S=F (𝑥) for any 𝑥, then 𝑥∈S 𝑥∉S.

This implies that the power set of any infinite set
must have a cardinality strictly greater than that

set – we cannot stop at 2 (which is the
cardinality of the continuum – Petzold pp. 31-2).

35

Russell’s Paradox

By contemplating Cantor’s argument, Russell came to
his famous paradox of

The set of all sets that are not members
of themselves

This is similar to the “paradox” of the village barber
who shaves all and only those men who do not shave
themselves. But whereas the latter can easily be
avoided (by denying that there is such a barber, or that
the barber is a man), Russell’s paradox demonstrates
a contradiction in the heart of the logical theories that
he and Frege had been attempting to develop.

36

Russell to Frege, 16 June 1902:
“Let w be the predicate of being a predicate which
cannot be predicated of itself. Can w be predicated
of itself? From either answer follows its
contradictory. … Likewise, there is no class (as a
whole) of those classes which, as wholes, are not
members of themselves. From this I conclude that
under certain circumstances a definable set does
not form a whole.”

Frege to Russell, 22 June 1902:
“Your discovery of the contradiction has surprised
me beyond words and, I should almost like to say,
left me thunderstruck, because it has rocked the
ground on which I meant to build arithmetic.”

31 32

33 34

35 36

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Lecture 2
Hilbert’s Programme
and Gödel’s Theorem

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford

Hilbert’s Programme
(from lecture 1, slide 12)

Recall Hilbert’s ambitions:

– 1921: To establish mathematics on a solid
and provably consistent foundation of axioms, from
which, in principle, all mathematical truths can be
deduced (by the standard rules of first order predicate
logic – this will usually be assumed in what follows).

– 1928: the Entscheidungsproblem or “decision
problem”: can an effective procedure be devised which
would demonstrate – in a finite time – whether any
given mathematical proposition is, or is not, provable
from a given set of axioms?

38

Consistency, Completeness,
and Decidability

Consistency
– The set of axioms should be provably consistent.

Completeness:

– All mathematical truths should (in principle) be
deducible from those axioms.

Decidability:

– There should be a clearly formulated procedure which
is such that, given any statement of mathematics, it
can definitively establish within a finite time whether
or not that statement follows from the given axioms.

39 40

Syntactic Formalism

In formal treatments, these notions are standardly
interpreted syntactically (i.e. in terms of structural
relationships between formulae) rather than
semantically (i.e. in terms of truth and meaning).

Thus understood,

– a consistent system is one in which it is never
possible to prove both a proposition P and its
negation P;

– a complete system is one in which it is always
possible either to prove P or to prove P, for any
proposition P that is expressible within the system.

41

Consistency and Completeness

Thus consistency (cannot prove both P and P)
and completeness (can prove either P or P) are
closely related, and can be understood quite
independently of whether or not the axioms are
true and the rules valid (i.e. truth-preserving).

If, however, we were able to achieve a consistent
and complete system of arithmetic, with true
axioms and valid rules, then any arithmetical
proposition would be provable if, and only if, it is
true. A major part of Hilbert's dream would thus
be realised.

Gödel’s Theorem (1931)

Gödel’s First Incompleteness Theorem:
In any true (and hence consistent) axiomatic
theory sufficiently rich to enable the expression and
proof of basic arithmetic propositions …
– It will be possible to construct an arithmetical

proposition G such that neither G, nor its negation, is
provable from the given axioms.

– Therefore the system must be incomplete.

Moreover it follows from Gödel’s reasoning – on the
assumption that the system is indeed true (and hence
consistent) – that G must, in fact, be a true statement
of arithmetic. Can we then know unprovable truths?

42

37 38

39 40

41 42

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

43

1. Devise a systematic method for assigning a “Gödel
number” g[F] to every formula F – and every sequence of
formulae – that are expressible within the theory.

2. Express logical relationships (e.g. “sequence S is a proof
of formula F”) in terms of mathematical relationships
between the Gödel numbers of S and F: the mathematical
formula expressing that relationship, Proof(g[S], g[F]) for
short, will be true if, and only if, S is a valid proof of F.

3. Devise a mathematical formula G which, according to this
method, is true if, and only if, there is no sequence S which
yields a valid proof of G itself. This formula will be of the
form “x Proof(x, g[G])”, i.e. “There is no x such that x is
the Gödel number of a sequence that proves G” …

The Proof Strategy

44

Gödel Numbering

Gödel’s proof (for which I mainly follow Nagel and
Newman’s presentation) encodes statements
about mathematical relationships (e.g. that some
sequence of formulae provides a valid proof of
some formula F) as formulae within arithmetic.
– This involves assigning a Gödel number, g[f] for short,

to each formula f, according to its structure:
Constant symbols have g numbers 1 (“”), 2 (“”), 3 (“”), 4 (“”),
5 (“=”), 6 (“0”), 7 (“s”), 8 (“(”), 9 (“)”), and 10 (“,”).

Numerical variables have g numbers 11 (“x”), 13 (“y”), 17, 19, …

Sentential variables have g numbers 11 (“p”), 13 (“q”), 17 , …

Predicate variables have g numbers 11 (“P”), 13 (“Q”), 17 , …

(11, 13, 17, 19, … is following the sequence of prime numbers >10)

45

Having Gödel numbers for the individual symbols, a
number can now be worked out for each formula by
raising successive prime numbers to those powers:

 x (x = s y)

4 11 8 11 5 7 13 9

24 311 58 711 115 137 1713 199

Then a Gödel number for a sequence of formulae
can be derived similarly, by raising 2 to the power
of the first formula, 3 to the power of the second,
and so on, then multiplying these all together.
Obviously, the numbers are astronomical!

* Note that “s” is the sign for “successor”, e.g. 1=s0.
46

Note that each formula (or sequence of formulae)
has a unique Gödel number – no two formulae (or
sequences) can have the same Gödel number.

Moreover it is straightforward “in principle” to decode
a Gödel number, by factorising it into its prime
factors, examining the powers of those factors, etc.

This makes it feasible to use Gödel numbers as
proxies for those formulae in expressing their
properties and the relations between them (e.g. the
function we shall call sub that holds when one
formula is a substitution instance of another).

Decoding Gödel Numbers

47

Substituting Numerals for Variables

We earlier saw how to derive the Gödel number
of the formula:

x (x = sy)

24 311 58 711 115 137 1713 199

Here y is a free variable, and we can imagine
substituting a particular numeral (say “ss0”, rep-
resenting 2) for y within the formula, yielding:

x (x = sss0)

The Gödel number of this formula is:
2431158711115137177197236299

48

So here we have taken formula number:

24311587111151371713199

“x (x = sy)”

and within it we have substituted the variable
with number:

13 “y”

by the numerical expression for the number:

2 “ss0”

This substitution has yielded formula number:

2431158711115137177197236299

“x (x = sss0)”

43 44

45 46

47 48

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

49

There will be a particular arithmetical function
relating these four numbers. We can write:

2431158711115137177197236299

= sub(24311587111151371713199, 13, 2)

So sub is an arithmetical function with 3 inputs:
– the Gödel number of a formula containing a variable;

– the Gödel number of that variable (e.g. 13 for “y”);

– a number (e.g. 2) whose numeral (e.g. “ss0”) is to
be substituted for that variable

Given these inputs, sub yields:
– the Gödel number of the formula resulting from sub-

stitution of the variable with the numeral.
50

sub is arithmetically a complicated function, but it is
well-defined and could be spelled out in detail.

If 𝐹 is a formula containing y (Gödel number 13)
and 𝐹 is the corresponding formula in which y is
substituted by the numeral for n, then we have:

g[𝐹] = sub(g[𝐹], 13, n)

Imagine now that the function sub(a, b, c) is spelled
out in gory arithmetical detail, and that we write out
this expression with y in place of a and c, and 13 in
place of b. This yields a complicated (but provably
possible) arithmetical expression for:

sub(y, 13, y)

which will soon play a key role.

51

Arithmetising Meta-Mathematics

sub is a relatively simple function. But Gödel also
showed that it is possible to define a (far more
complicated) arithmetical formula A corresponding to
the meta-mathematical statement that a sequence of
formulae S constitutes a proof of formula F. A will be
(arithmetically) true if and only if S indeed proves F.

Let us use “Proof(a, b)” as shorthand for the
arithmetical formula corresponding to:

“The sequence of formulae with Gödel number a is a
proof (or demonstration)* of the formula with Gödel
number b.”

* Nagel and Newman use “Dem” instead of “Proof”
52

A Truth-Preserving Correspondence

The crucial point here is that the arithmetical formula
Proof(a, b) will be true if, and only if, the meta-
mathematical statement “The sequence of formulae with
Gödel number a is a proof of the formula with Gödel
number b” is also true. [Note that Proof(a, b) expresses a
statement – e.g. of an arithmetical equation – rather than a
mere numerical expression like sub(a, b, c)]

So to establish whether or not the sequence of formulae
with Gödel number a is in fact a valid proof of the formula
with Gödel number c, it suffices to establish whether or
not the numbers a and c yield a true equation when
substituted to give the arithmetical formula Proof(a, c).

53

The Heart of Gödel’s Argument

Consider now the arithmetical formula:

 Proof(a, b)

This corresponds to the statement that the
sequence of formulae with Gödel number a is not a
proof of the formula with Gödel number b.

Likewise this arithmetical formula: *

 x Proof(x, sub(y, 13, y))

Corresponds to the statement that there is no proof
of the formula with Gödel number sub(y, 13, y).

* Nagel & Newman use “(x) ” instead of “ x”
54

 x Proof(x, sub(y, 13, y))

This arithmetical formula corresponds to the
meta-mathematical statement that

– … there exists no sequence of formulae that
constitutes a proof of the formula with Gödel
number sub(y, 13, y).

– … or in other words, that formula (whose precise
identity will obviously depend on the value
substituted for “y”) is not provable.

Now consider the arithmetical formula above,
and suppose it has the Gödel number n.

49 50

51 52

53 54

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

55

Gödel’s Magical Move

We have that:

g[x Proof(x, sub(y, 13, y))] = n
Now consider the formula:

(G) x Proof(x, sub(n, 13, n))

and notice that this is itself the formula that we
obtain from the formula with Gödel number n if
we substitute y by the numeral for n. Hence:

g[x Proof(x, sub(n, 13, n))] = sub(n, 13, n)
56

(G) x Proof(x, sub(n, 13, n))

This arithmetical formula corresponds to the
meta-mathematical statement that
– …there exists no sequence of formulae that

constitutes a proof of the formula with Gödel
number sub(n, 13, n).

– … or in other words, that formula is not provable.

But this arithmetical formula itself has the
Gödel number sub(n, 13, n)!

So G corresponds to the meta-mathematical
statement that G itself is unprovable!!

57

The Denouement

The arithmetical proposition G encodes the
statement that G itself is unprovable (within the
formal system chosen).

So if G were false, then it would follow (from this
encoding) that G was not unprovable:

― Hence G would have to be provable in the system.

― And if G were provable within a correct axiomatic
system of arithmetic, then G would have to be true.

Hence if G were false, we would have a contradict-
ion. So G must be true and, given what it encodes,
must also be unprovable within the formal system.

58

To spell this out further, the encoding means that:

G is true G is unprovable

 G G is provable

But if G is provable and the system provides a
faithful and consistent representation of arithmetic,
then G must be true, so we have:

 G G is provable G
So G cannot be false, and hence must be true. Yet if
it is true, it is unprovable (because it encodes the
statement that it is unprovable). So our system, if it is
a consistent and correct axiomatisation of arithmetic,
cannot be complete, for G will then be a true
statement of arithmetic that cannot be proven.

The Entscheidungsproblem Remains

Gödel left the Entscheidungsproblem as
unfinished business:

– He had shown that any consistent axiomatic
system of arithmetic would leave some
arithmetical truths unprovable
(i.e. such a system could not be complete).

– But there might still be some effectively
computable decision procedure which would
infallibly, in a finite time, reveal whether any given
proposition P is, or is not, provable.

59

What is “effective computability”?

An “effectively computable” procedure is
supposed to be one that:
– can be performed by systematic application of

clearly specified rules,

– without requiring any inspirational leaps or
spontaneous intellectual insights.

So to find the limits of “effective computability”,
– we need to devise a way of encompassing all

possible mechanical methods of inference …

– … and this is how Alan Turing came to invent
what is now known as the Turing machine.

60

55 56

57 58

59 60

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Lecture 3
“On Computable Numbers”:

Turing’s 1936 Paper

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford
62

The key contribution of Alan Turing’s 1936 paper

“On Computable Numbers, with an
application to the Entscheidungsproblem”

(Proceedings of the London Mathematical
Society, 2nd series, Vol. 42, pp. 230-65)

is to provide a characterisation of “effective
computability” in terms of the behaviour of an
extremely simple type of machine which, he argues,
can execute (either directly or indirectly) all possible
methods of “mechanical” information processing.
This is now universally known as the Turing Machine.

Effective Computability

63

An Outline of the 1936 Paper

“On Computable Numbers …”
– Turing defines the concept of a “computable

number”, focusing on binary fractions or what
we might call “binimals” (e.g. 0.10101010 …).

– He will show that these are more extensive
than the algebraic (and hence rational)
numbers, but less than the real numbers.

– In particular, they can be proved to be
enumerable, because the machines that
generate them are enumerable.

64

§1 Computing Machines (p. 68)

Introducing the Turing machine
– Most of (the short) §1 is concerned with explaining

the structure of a Turing machine. But first …

Justification of the Turing machine
– “We have said that the computable numbers are

those whose decimals [binimals] are calculable by
finite means. … the justification lies in the fact that
the human memory is necessarily limited.”

– Turing refers forward to §9, where he will argue in
outline why any finitely calculable number should be
calculable by a Turing machine …

65

In §9, Turing discusses the nature of
computation in general, explaining why the
Turing machine is a suitable model:

“Computing is normally done by writing certain
symbols on paper. We may suppose this paper
is divided into squares … I assume then that
the computation is carried out on … a tape
divided into squares. I shall also suppose that
the number of symbols which may be printed is
finite …” (Petzold, pp. 190-1)

A General Model of Computation

66

Note here that the “computer”, for Turing,
is the person performing the computation:

“The behaviour of the computer at any moment is
determined by the symbols which he is observing,
and his ‘state of mind’ at that moment. We may
suppose that there is a bound B to the number of
symbols or squares which the computer can
observe at any one moment. … We will also
suppose that the number of states of mind which
need be taken into account is finite. … If we
admitted an infinity of states of mind, some of
them will be ‘arbitrarily close’ and will be
confused. …” (Petzold, p. 191)

61 62

63 64

65 66

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

67

The computer’s repertoire of operations is
precisely circumscribed in terms of “simple
operations” that cannot be further divided:

“Let us imagine the operations performed by the
computer to be split up into ‘simple operations’
… Every such operation consists of some
change of the physical system consisting of the
computer and his tape. … We may suppose
that in a simple operation not more than one
symbol is altered. … We may … without loss
of generality, assume that the squares whose
symbols are changed are always ‘observed’
squares.” (Petzold, p. 192)

68

“Besides these changes of symbols, the simple
operations must include changes of distribution
of observed squares. The new observed
squares must be immediately recognisable by
the computer. … it is reasonable to suppose
that they can only be squares whose distance
from the closest of the immediately previously
observed squares does not exceed a certain
fixed amount … say … L squares …

It may be that some of these changes
[i.e. of symbol or of observed squares]
necessarily involve a change of state of mind.”

(Petzold, p. 192-3)

69

“The most general single operation must therefore
be taken to be one of the following:

(A) A possible change of symbol together with a
possible change of state of mind.

(B) A possible change of observed squares,
together with a possible change of state of
mind.

The operation actually performed is determined,
as has been suggested [highlighted passage in
slide 66], by the state of mind of the computer and
the observed symbols. In particular, they
determine the state of mind of the computer after
the operation is carried out.” (Petzold, p. 193)

70

“We may now construct a machine to do the
work of this computer. To each state of mind of
the computer corresponds an ‘m-configuration’
of the machine. The machine scans B squares
corresponding to the B squares observed by the
computer. In any move the machine can
change a symbol on a scanned square or can
change any one of the scanned squares to
another square distant not more than L squares
from one of the other scanned squares. The
move which is done, and the succeeding
configuration, are determined by the scanned
symbol and the m-configuration.”

(Petzold, p. 194)

71

Having sketched this general model of a
computing machine, based on an abstract
understanding of what a human computer can
do, Turing points out – without proof (but
correctly) – that any number computable by such
a machine can also be computed by a machine
of the type defined earlier (in §1 and §2).

Those machines are a subset of the §9
machines in which B (the maximum number of
squares scanned at any one time) is one, and L
(the maximum distance between squares
scanned in successive operations) is also one.

72

The Turing Machine comprises:

A potentially infinite tape divided into numbered
squares, on which symbols can be written/erased.

A read/write head (as in a tape recorder) which
can “scan” symbols and also write (or erase) them.

An “m-configuration” (usually now called a “state”),
taking any of a specified finite range of values –
this is the machine’s active memory. Computation
starts from the first, initial, state.

Instructions in the form of a “machine table”, which
tell it what to do in each possible circumstance …

67 68

69 70

71 72

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

73

Here we see a
Turtle System
Turing Machine
simulator, at 45
cycles through the
irrational (probably
transcendental)
number program
that Turing gives
in §3 of his paper
(Petzold, p. 87).

A Turing Machine in Action

74

The “Configuration” (pp. 69-70)

At any point, the machine can scan only one square
on the tape (the “current” or “scanned” square).

As it moves left and right on the tape (one square at
a time), it scans the symbol on the new current
square, and takes account of this in its behaviour.

Turing refers to the combination of
– the m-configuration (what we call “state”)

– the “scanned symbol”

as the current “configuration” of the machine. The
next action of the machine depends entirely on this.

75

The Repertoire of Actions (pp. 70-1)

At each stage, depending on the configuration
(i.e. the symbol read from the current square,
and the current state), the machine can:
– Erase the symbol, or write a new one;

– Move the scanning head one place left or right
on the tape;

– Change to a new state (m-configuration).

Initially, Turing allows multiple actions to be
treated as one (though this is restricted when
the machines come to be regimented at §5).

76

§2 Definitions (p. 72)

Turing focuses on automatic machines, whose
behaviour is entirely determined by the
configuration (though he also mentions choice
machines, which are not fully determined).

Any machine will have a limited range of
symbols that it can read and write. Turing
distinguishes:
– figures: “0” and “1”

– other symbols (“symbols of the second kind”)

77

E/F Squares, and Marking (pp. 93-4)

In §3 Turing explains that his machines
will write figures only on alternate squares:
– These are called “F-squares” (figure);

– The others are “E-squares” (erasable), and
will be used for working notes.

– “If a symbol β is on an F-square S and a
symbol α is on the E-square next on the right
of S, then S and β will be said to be marked
with α. The process of printing this α will be
called marking β (or S) with α” (end of §3).

78

The Computed Number (p. 73)

If an automatic machine starts from a blank tape
in its initial state, then the sequence of figures
(i.e. “0” and “1”) that it writes on the tape is called
the “sequence computed by the machine”.

“The real number whose expression as a binary
decimal (sic.) is obtained by prefacing this
sequence by a decimal [binary] point is called the
number computed by the machine.”
– In Turing’s machines, the binary digits of this

number are supposed to be printed left-to-right
on successive F-squares, and never erased.

73 74

75 76

77 78

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

79

The tape is like this at one stage in the operation
of the machine Turing specifies on p. 87:

Ə Ə 0 0 1 0 1 x 1 x 0

An Example of a Marked Tape (p. 89)

“schwa” characters
marking the left end

figures written
on F- squares

the current
square

figure “1” written on F-squares,
each marked with an “x” on the

adjacent E-square

so far, the computed number
is 0.0010110 … (in binimal)

80

Circular and Circle-Free Machines (p. 76)

A Turing machine that carries on writing out binary
digits for ever in this way is called “circle-free”: these
define computable numbers.
– We are interested in binary fractions, expressed as

non-terminating binimals (so sequences that
correspond to rational numbers recur for ever).

– Later, Turing will call a number that defines such a
circle-free machine a “satisfactory” number (§8).

A Turing machine that stops writing out binary digits
at any stage is called “circular”. [Think of it as
getting stuck in a non-writing loop or “circle”.]

81

The Complete Configuration (p. 75)

We have already seen “m-configuration” (i.e.
state) and “configuration”. But Turing defines yet
another use of the word, intended to capture the
complete state of a computation at any time:
“At any stage of the motion of the machine, the number
of the scanned square, the complete sequence of all
symbols on the tape, and the m-configuration will be
said to describe the complete configuration at that
stage. The changes of the machine and tape between
successive complete configurations will be called the
moves of the machine.”

82

§3 Examples of Computing Machines

Turing first gives an illustration of a machine
table for a machine that will compute the
binimal for one third:

0 1 0 1 0 1 0 1 0 1 …

In the full form (Petzold p. 81), this requires 4
states (starting from “b” for “begin”):
b (“b”) Prints a “0” and moves right into state c
c (“c”) Moves right into state e
e (“e”) Prints a “1” and moves right into state k
k (“k”) Moves right into state b

83

m-config. symbol operations final m-config.

b None P0, R c
c None R e
e None P1, R k
k None R b

Configuration Behaviour

b

c

e

k

P0, R

P1, R

R

R

84

Simplifying the Tables

Turing points out that machine tables can be
greatly simplified if we allow a single transition
to perform multiple operations (p. 84):

m-config. symbol operations final m-config.

None P0 b

b 0 R, R, P1 b

1 R, R, P0 b

79 80

81 82

83 84

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

85

A More Complex Example

Turing then gives a far more complex
example, which computes the sequence:

0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 …
(see Petzold pp. 85-90 for details)

– This is irrational, probably transcendental.

– Note Turing’s convention of marking the left-
hand end of the tape (i.e. printing on the first F-
and E- squares) two “schwa” characters: “ƏƏ”.

– Note also that two successive blanks always
signify the right of the printed part of the tape.

86

Listing Complete Configurations

Turing illustrates the working of this machine
with a sequence of “complete configurations”
that include the entire non-blank portion of the
tape, with the state and position indicated.
– The successive complete configurations are

separated by colons, and Turing then puts the
state name into the sequence also, just to the left
of the scanned symbol, e.g. (Petzold p. 92):

b : Ə Ə o 0 0 : Ə Ə q 0 0 : …

– This format is flagged as “(C)”, cf. Petzold p. 144.

87

Getting Used to Turing Machines

To familiarise yourself with how Turing
machines work, see Chapter 6 of Petzold
(“Addition and Multiplication”).

This departs from Turing’s paper, giving
two helpful examples:
– A machine to generate all the positive

integers in sequence (pp. 99-100);

– A machine to calculate the square root of 2
(pp. 100-108).

88

§4 Abbreviated Tables (pp. 113-5)

Initially, one of the most difficult aspects of
Turing’s paper is understanding his use of
“skeleton tables” to define machines.

These make use of “m-functions” which enable
many different “m-configurations” (i.e. states) to
be defined that have very similar behaviour but
with slight differences, for example:
– handling different symbols (either to read/find or

write/mark);

– moving to different states once their work is done.

.

89

Turing’s First m-function “Find” (p. 115)

m-config. Symbol Behaviour Final m-config.

Ə L f1(C, B, α)

f(C, B, α) not Ə L f(C, B, α)

None * L f(C, B, α)

α C

f1(C, B, α) not α R f1(C, B, α)

None R f2(C, B, α)

α C

f2(C, B, α) not α R f1(C, B, α)

None R B

This searches for the leftmost α symbol. If found, state C
is entered at that point; if not, state B is entered.

90

α

None R

f(C, B, α) f1(C, B, α)

f2(C, B, α)

Ə L

C

α

? R

B
None R

? R

? L

Note that “f(C, B, α)” etc. are just
functional labels for the three states
whose behaviour is specified here.
These might be states 314, 315, and
316 (say) of the relevant machine, but
the point is that when the first of them
is entered, the machine will either find
the leftmost “α” on the tape and enter
state C on that square, or fail to find
an “α” and enter state B (on the
square to the right of the first two
blanks at the right-hand end).

85 86

87 88

89 90

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Lecture 4
Enumerating the Computable

Numbers, and the
Universal Turing Machine

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford
92

α

None R

f(C, B, α) f1(C, B, α)

f2(C, B, α)

Ə L

C

α

? R

B
None R

? R

? L

Recall that we have seen the
m-function “Find”, defined by a
“skeleton table” that corresponds
to the diagram shown here.

After the machine moves into state
f(C, B, α), it will either find the
leftmost “α” on the tape and enter
state C on that square, or fail to
find an “α” and enter state B (on
the square to the right of the first
two blanks at the right-hand end).

93

Since any machine that includes the m-function
f(C, B, α) is guaranteed to reach state C or B when it
exits from this nexus, we can simplify the diagram:

Summarising “Find”

Some “α” exists Move to square
containing leftmost “α” C

B

f(C, B, α)

No “α” exists Move
to square after 2 blanks at right

94

“Erase” (3 arguments, erase once)

m-config. Behaviour Final m-config.

e(C, B, α) f(e1(C, B, α), B, α)

e1(C, B, α) E C

Turing (p. 118) defines two versions of this m-function,
first with three arguments (shown above), then with two.
On going into state e(C, B, α), the machine transitions
into state f(e1(C, B, α), B, α), which searches for the
leftmost “α” and enters state e1(C, B, α) on the square
containing that “α” (or ends in state B if there is no “α”).
Then it erases that square (action E) and enters state C.

95

Here is the simplified diagram for e(C, B, α):

This m-function will now be used to define e(B, α).

Summarising “Erase”

Some “α” exists Move to square
of leftmost “α” and erase it C

B

e(C, B, α)

No “α” exists Move
to square after 2 blanks at right

96

“Erase” (2 arguments, repeated erase)

m-config. Behaviour Final m-config.

e(B, α) e(e(B, α), B, α)

Some “α” exists
Move to square of left-
most “α” and erase it

e(B, α) Be(e(B, α), B, α)

No “α” exists
Move to square
after 2 blanks
at right

Note how State e(B, α) immediately transitions to state
e(e(B, α), B, α), which is defined so that after erasing the
leftmost “α”, it reverts to state e(B, α), and repeats.

(p. 118)

91 92

93 94

95 96

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

97

The “Print at the End” m-function

m-config. Symbol Behaviour Final m-config.

pe(C, β) f(pe1(C, β), C, Ə)

pe1(C, β) Any R, R pe1(C, β)

pe1(C, β) None Pβ C

pe(C, β)

pe1(C, β)f(pe1(C, β), C, Ə)

Move to the leftmost
“Ə” (of the two at the
start of the tape). In
a Turing-convention
machine, this will
always succeed

C

None
Print “β”

[this will be on
the first blank

F-square]

? R, R

(p. 120)

98

f(r(C), B, α) finds the left-
most “α” then enters state
r(C), thus moving right and

entering state C. So f''(C, B, α) is similar in effect to f(C, B, α),
except that it moves right after finding the leftmost “α”.

“Left”, “Right”, f' and f'' m-functions

m-config. Behaviour Final m-config.

l(C) L C

r(C) R C

r(C) C

The table has only
three columns, as
this behaviour is
unaffected by tape
symbols (p. 121)

Move right

f'(C, B, α) f(l(C), B, α)

f''(C, B, α) f(r(C), B, α)

99

The “Copy” m-function

m-config. Symbol Behaviour Final m-config.

c(C, B, α) f'(c1(C), B, α)

c1(C) β pe(C, β)

c(C, B, α) f'(c1(C), B, α)

Some “α” exists Move
to square to the left of
the leftmost “α”

c1(C)

No “α” exists
 move to
extreme right

B

pe(C, 0)

pe(C, 1)

0

1

Likewise for all other
symbols β – pe will
print the relevant
symbol at the right
end of the tape

(etc.)

(p. 121)

100

The “Compare” m-function

m-config. Symbol Behaviour Final m-config.

cp(C, A, E, α, β) f'(cp1(C,A,β), f(A,E,β), α)

cp1(C, A, β) γ f'(cp2(C,A,γ), A, β)

cp2(C, A, γ) γ C

cp2(C, A, γ) not γ A

Turing (p. 123) explains the behaviour of this m-function thus:
“The first symbol marked α and the first marked β are compared.
If there is neither α nor β, E.* If there are both and the
symbols are alike, C. Otherwise A.”

* note that the Gothic “E” looks very like the “C”!

101

A Summary of “Subroutines”

The main tape-manipulating “subroutines”
defined in this way in§4 are:

f find first “α” (f'/f'' then move left/right)

e erase first “α” (or all “α”s, or all markers)

pe print “β” in the first blank F-square

c copy into the first blank F-square the
first symbol marked with an “α”

ce copy at the end all the symbols marked
with an “α”, then erase the “α”s

re replace first “α” (or all “α”s) with “β”
102

cr copy at the end all the symbols marked
with an “α” (without erasing the “α”s)

cp compares the first symbol marked “α”
with the first symbol marked “β”,
entering different next states
depending on the outcome

cpe likewise, but erase markers if similar

(or compare two sequences …)

g find last “α” (the paper calls this “q”, but
“g” seems intended – see p. 124)

pe2 print 2 characters in two F-squares

ce2, ce3 copy to the end symbols marked α, β
(and γ), erasing the symbols

97 98

99 100

101 102

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

103

§5 Enumeration of
Computable Sequences

Turing now explains (pp. 131 ff.) how to put all
possible machine tables into a standard form,
ultimately reducing each to a single number.
– We convert each table into a table that has one

write and one move/nomove (L/R/N) per line;

– We number all the states (q1, q2 etc.), and all the
symbols (S0, S1, S2 etc. – S0 is the blank);

– Each line of the table now takes one of the forms
“qiSjSkLqm”, “qiSjSkRqm”, or “qiSjSkNqm”.

– These can be listed, separated by semicolons.
104

We have a line of text, consisting of quintuples
(e.g. “q1S2S2Lq2”) separated by semicolons, …
– “In this description we shall replace qi by the letter

‘D’ followed by the letter ‘A’ repeated i times, and Sj

by ‘D’ followed by ‘C’ repeated j times.” So:
“q1” becomes “DA”; “q2” becomes “DAA”

“S0” becomes “D”; “S1” becomes “DC”

– This is the standard description (S.D.) of the
machine (p. 137)

– “If finally we replace ‘A’ by ‘1’, ‘C’ by ‘2’, ‘D’ by ‘3’, ‘L’
by ‘4’, ‘R’ by ‘5’, ‘N’ by ‘6’, and ‘;’ by ‘7’ we … have a
description of the machine [as] an arabic numeral.
The integer represented by this numeral may be
called a description number (D.N.) of the machine.”

105

“Let us find a description number for the
machine I of §3.”

This is the machine (p. 81, slide 83) that
prints out the binimal “0 1 0 1 0 1 …”:

Finding the Description Number of a
Machine: Turing’s Example (pp. 138-40)

b

c

e

k

P0, R

P1, R

R

R

106

m-config. symbol operations final m-config.

b None P0, R c

c None R e

e None P1, R k

k None R b

“When we rename the m-configurations its
table becomes:

q1 S0 PS1, R q2

q2 S0 PS0, R q3

q3 S0 PS2, R q4

q4 S0 PS0, R q1

107

Other tables could be obtained by adding
irrelevant lines such as [the last one here]:”

q1 S0 PS1, R q2

q2 S0 PS0, R q3

q3 S0 PS2, R q4

q4 S0 PS0, R q1

q1 S1 PS1, R q2

This final line never comes into play, as
the machine always moves right, so the
current symbol is always blank (S0).

108

Turing has illustrated in passing here that many
different machines can be entirely equivalent in
behaviour. Adding an “irrelevant” line to the
table (i.e. one that is never actually invoked) will
make no difference at all to the behaviour, and
hence will generate the same sequence.
– It is also possible to have other machines that

generate the same sequence by means of
different state transitions: that are equivalent in
output, but not trivially so.

– Thus the mapping from “satisfactory” machines to
computable numbers is surjective (each such
machine generates just one computable number)
but it is not injective.

103 104

105 106

107 108

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

109

Having explained his two illustrative
tables, Turing continues (p. 139):

“Our first standard form would be
q1 S0 S1 R q2 ; q2 S0 S0 R q3 ; q3 S0 S2 R q4 ;
q4 S0 S0 R q1 ; .

The standard description is

DADDCRDAA;DAADDRDAAA;

DAAADDCCRDAAAA;DAAAADDRDA;”

[“q1”“DA”, “S0”“D”, “S1”“DC”,
“q2”“DAA”, “q3”“DAAA”, etc.]

110

Now, as Turing explained earlier, we simply
replace ‘A’ by ‘1’, ‘C’ by ‘2’, ‘D’ by ‘3’, ‘L’ by ‘4’,
‘R’ by ‘5’, ‘N’ by ‘6’, and ‘;’ by ‘7’, to yield the
corresponding description number …

“A description number is
313325311731133531117311133225
31111731111335317

and so is
313325311731133531117311133225
3111173111133531731323253117”

The second number here is for the machine
with the “irrelevant” final quintuple.

111

“To each computable sequence there
corresponds at least one description number,
while to no description number does there
correspond more than one computable
sequence. The computable sequences and
numbers are therefore enumerable.” (p. 138)

This is a significant result: it follows that
“nearly all” of the real numbers in Cantor’s
universe are not computable.

The Computable Numbers
Are Enumerable

112

§6 The Universal Machine

In§6 of his paper (pp. 143-9), Turing explains
how to design “a single machine which can be
used to compute any computable sequence.

If this machine U is supplied with a tape on the
beginning of which is written the S.D of some
computing machine M, then U will compute the
same sequence as M .”

As Petzold remarks, Turing starts rather oddly:

“Let us first suppose that we have a machine M’ '
which will write down on the F-squares the
successive complete configurations of M. ”

.

113

Recalling Machine II

Turing now refers back to Machine II of §3
(pp. 87-92, slides 85-6), which generates the
sequence “0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 …”.

– This again seems odd, because that machine was
defined with multiple operations in most lines of the
table (cf. p. 84 and slide 84), whereas at this point in
the paper Turing is restricting his attention to simpler
“standard form” machines (p. 132, slide 103).

– Ignore this detail, because the process Turing is
about to illustrate using Machine II and format “(C)”
will work with standard form machines.

114

Generating Complete Configurations

Recall from slide 86 how Turing lists sequences
of “complete configurations” that include the
entire non-blank portion of the tape, with the state
and position indicated, e.g. (p. 92):

b : Ə Ə o 0 0 : Ə Ə q 0 0 : … (C)

At pp. 144-6, Turing returns to and modifies this
format by replacing the state codes (b o q) with
“DA”, DAA”, and “DAAA”, blanks by “D”, “0” by
“DC”, “1” by “DCC”, and “Ə” by “DCCC”, to fit with
the standard description.

109 110

111 112

113 114

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

115

The result of these substitutions into (C) is:
“DA : DCCCDCCCDAADCDDC :

DCCCDCCCDAAADCDDC : … (C1)

(This is the sequence of symbols on F-squares.)”

– Turing (p. 146) means that the machine M’ ', which
is being designed to print out the successive
configurations of machine M , is to do so in this
form (and on the F-squares).

He remarks that “if M can be constructed, then so
can M’ '.” It would operate by referring back to a
copy of the S.D. of M, written on the tape.

Machine M’ '

116

M’ ' will print out, in sequence, the complete
configurations that M would produce.

At each stage, it will have a record of the last
complete configuration (at the right of the tape),
and a record of M’ ’s rules (in the form of the
standard description) at the left of the tape.

It will shuttle back and forth, checking the latest
“configuration” (i.e. state and symbol) from the
right, then finding the rule that this matches at
the left, then moving back to build the next
complete configuration accordingly on the right.

How Machine M’ ' Will Work

117

Here the configurations in (C1), as generated by
[non-standard] Machine II (p. 87), are underlined:

“DA : DCCCDCCCDAADCDDC :
DCCCDCCCDAAADCDDC : …”

(this sequence is built up at the right of the tape)

– Recall that the complete configurations are separated by
colons, and within them, just one state (represented by “D”
followed by a sequence of “A”s) will appear, followed by
the “scanned symbol” on the current square (represented
by “D” followed by a sequence of “C”s).

– You may find it helpful to refer to Turing’s text on p. 151.

Identifying the Configuration

118

We can underline the “trigger” configurations within
the standard description of Machine I (pp. 81, 139-40)
(note we can’t do this for Machine II, as it’s non-standard):

“DADDCRDAA;DAADDRDAAA;
DAAADDCCRDAAAA;DAAAADDRDA”

(this is put at the left of the tape to start with)

– Overall, the first quintuple has been translated thus:

Identifying the Matching Rule

Initial state Read symbol Write symbol Move Final state

b None 0 R c

q1 S0 S1 R q2

DA D DC R DAA

119

To mimic M’ ’s generation of a computable number,
we also have to print out at each stage any new
figures (i.e. “0”s and “1”s) produced by the
transition. These will be colon-separated, between
the successive complete configurations (pp. 147-8).

If M’ ' has been designed appropriately, then:

Replacing the standard description of M’ (at the
left of the tape) with the standard description of a
different machine N will mean that we end up
with the sequence of figures that N would
generate on the tape, instead of the sequence of
figures that M would generate.

Achieving Universality

120

§7 describes his Universal Machine in detail,
making use of many of the “subroutine”
functions whose skeleton tables were in §4.

This was the first proof that there could be a
“universal” programmable machine, capable
of computing any number that we know how
to compute, when given the recipe.

By extension, it seems clear that any other
computable function will be achievable.

§7 Detailed Description of the
Universal Machine

115 116

117 118

119 120

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Lecture 5
Settling Hilbert’s

Entscheidungsproblem,
and the Halting Problem

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford
122

Recall from §5 that Turing has shown that
the computable numbers are enumerable.

But he now remarks that Cantor’s diagonal
argument might seem to prove otherwise.

If the computable numbers are enumerable,
then we should be able to form a list that
contains them all (they are all, of course,
endless binary fractions of “0”s and “1”s).

§8 Application of the Diagonal
Process

123

Suppose, then, that this is the list:
1: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
2: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
3: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
4: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
… …

Consider now the number β (see p. 174) that
we get if we take the digits in order down the
long diagonal of this list, changing “0” into “1”
and “1” into “0”. That number must differ
from every number in the list, so if Turing is
correct, it cannot be a computable number.

124

Yet how can β fail to be computable? If we go
through the integers one after another, it is
relatively easy to identity those that are
description numbers of Turing machines and
then to construct the standard description.

Can’t we just do this repeatedly, then mimic in
turn the 1st, 2nd, … nth … machine until we get
the nth digit, swap “0” for “1” and continue?

Why won’t this give a way of computing β, and
thus refute Turing’s claim of enumerability?

What Prevents Computation of β?

125

The answer is that to complete the diagonal
process and compute β, we have to do more than
identify the integers that are description numbers
of Turing machines. A computable number is
generated only by a circle-free machine, so we
must compute whether or not any given integer is
the description number of a circle-free machine.

Since computable construction of the diagonal
number β would contradict the enumerability of
the computable numbers, and since the latter has
already been proved, Turing concludes that there
cannot be any “general process” for “finding out
whether a given number is the D.N. of a circle-free
machine ... in a finite number of steps” (pp. 177-8).

126

Turing remarks that the reader might feel that
“there must be something wrong” with this
argument. He then explains where the
attempt to construct β fails (pp.179-83).
It breaks down when our would-be machine H
comes to check its own description number N.
For then in order to determine the N th digit that
it is supposed to output, it must first discover
what the Nth digit of machine number N (i.e. H
itself) would be. So it never finds the answer.

Where the Attempt Fails

121 122

123 124

125 126

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

127

Another “Diagonal” Argument

Turing’s argument here is reminiscent both of
Cantor’s diagonal arguments, and also Gödel’s
proof (which involves a formula that indirectly
refers to its own unprovability).

He has shown that no Turing machine can be
made to predict with certainty whether a given
Turing machine, will, or will not, be “circle-free”.

Using a conventional programming language,
we can prove a related result of more general
importance, and with surprising ease ...

The Halting Problem
Suppose we have the text of a computer
program P (in a standard programming
language), taking input from a text file, T.

We would like to have a testing procedure H
which will examine P and T, and then reliably
work out the answer to this question:
– Will program P, when run with input T,

eventually halt, or will it never terminate?

Turing’s argument implies that H is impossible
(though of course his own machines never halt
if “satisfactory” – see Petzold pp. 328-9).

128

Suppose we have such a procedure H:

We now modify that program:

H

Text of
program P

Text of
input T

H

129

P would halt
given input T

P would loop
given input T

print(“YES”)

print(“NO”)

repeat
print(“YES”)

until 0=1

print(“NO”)

Text of
program P

130

Clearly if the initial program is possible, then the
modified version must be possible too, because
the changes are so simple:

– The input process has modified so that instead of
taking both a program file P and a text file T as
input, it uses the program file in place of T – hence
its verdict is based on whether or not the specified
program file P halts when given its own text as
input. (The modified program could simply start by
duplicating file P and taking the duplicate as T.)

– The output process has also been very simply
modified, so that if the “it would halt” test comes
out positive, the program goes into an infinite loop.

The Contradictory Program Q

Does program Q halt when given itself as input?
If it does, then it doesn’t, and if it doesn’t, then it
does! So Q is an impossible program, and
therefore H must have been impossible too.

H
Input: text
of some
program

repeat
print(“YES”)

until 0=1

print(“NO”)

131 132

Having proved that no machine can provide a
reliable circle-free test, Turing goes on to
prove a lemma that will be used later:

“We can show further that there can be no machine
E which, when supplied with the S.D of an
arbitrary machine M, will determine whether M
ever prints a given symbol (0 say).” (p. 183)

The proof follows the familiar pattern, showing
that if E were possible, then a diagonally
impossible machine (namely, a circle-free
testing machine) would also be possible.

An Important Lemma

127 128

129 130

131 132

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

133

Suppose we have our 0-testing machine E, to be
applied to some arbitrary machine M.

We then consider machines M1, M2, … Mn, …,
which are just like M except that they print out n
fewer “0”s (by replacing the first n “0”s with
another symbol, e.g. “ϕ” – this can be done
mechanically by adding more states).
Now we create another machine G from E,
which operates by mechanically testing M, M1,
M2, … in turn and outputting a “0” each time if
and only if E would decide that the tested
M -machine would never generate a “0”.

So, for example, if M would print 4 “0”s, we get:
134

Machine output 1 output 2 output 3 output 4 output 5 G outputs

M 0 0 0 0 - -

M1 ϕ 0 0 0 - -

M2 ϕ ϕ 0 0 - -

M3 ϕ ϕ ϕ 0 - -

M4 ϕ ϕ ϕ ϕ - 0

M5 ϕ ϕ ϕ ϕ - 0

G will print “0” an infinite number of times,
unless M prints “0” infinitely often, in which case
G will never print “0”.

We now test G itself usingE, to find out whether
G ever prints “0”. This yields a test whether or
not M prints “0” infinitely often.

135

So if machine E exists, it follows that we can
create a general process to determine whether
any machine M prints “0” infinitely often.
Clearly exactly the same process can be
followed for “1” (p. 186).

But then, “By a combination of these processes
we have a process for determining whether M
prints an infinity of figures, i.e. we have a
process for determining whether M is circle-
free. There can therefore be no machine E. ”

Deducing the Lemma

136

§9 is devoted to showing “that the ‘computable’
numbers include all numbers which would
naturally be regarded as computable”.

Generalised, this is now widely known as:

The Church-Turing Thesis
Any effectively calculable function can be
computed by a Turing machine (or an
equivalent process).

§9 The Extent of the
Computable Numbers

137

Turing (§9, p. 190) proposes three types of
arguments for his claim about the generality of
Turing machines (the third involves outlining “large
classes of numbers which are computable”, and
constitutes§10 – see slide 145 below).

The first type of argument (pages190-4) maintains
that a Turing machine can compute any number
that would be computable by a human following a
definite process. This was anticipated back in §1,
at p. 68 (see Lecture 3, slides 65-71).

Turing’s First Argument
for the Church-Turing Thesis

138

Turing’s second type of argument (if not the
particular variant he gives in this paper) has
almost certainly been the most influential.

– Here he first argues (pp. 221-8) that “If the
notation of the Hilbert functional calculus [i.e.
first-order predicate logic] is modified so as to
be systematic, and so as to involve only a finite
number of symbols, it becomes possible to
construct an automatic machine, K , which will
find all the provable formulae of the calculus.”

Turing’s Second Argument

133 134

135 136

137 138

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

139

Turing sketches how a Turing machine can
be defined to generate in turn all provable
formulae of a system of axioms expressed in
predicate formulae.
– As Petzold explains (pp. 220-1), this is known

as a “British Museum” algorithm.

Turing then briefly points out (p. 229) that any
Turing machine can be defined in terms of
predicate formulae. (This is demonstrated in
far more detail in §11.)

A “British Museum Algorithm”

140

Thus Turing has argued, in effect:

– that anything computable through predicate
logic can be computed by a Turing machine;

– “that the numbers ... definable [in terms of
predicate logic] by the use of axioms include
all the [Turing-machine] computable
numbers.” (p. 229)

So he has thereby sketched “A proof of the
equivalence of two definitions” of computable
numbers, as he anticipated at p. 190.

An Important Equivalence

141

In early April 1936, six weeks before Turing
submitted his own paper (on May 28), Alonzo
Church of Princeton sent his two-page “A Note
on the Entscheidungsproblem” for publication
in Volume 1 of The Journal of Symbolic Logic.

– Church had proved, using his “Lambda Calculus”,
that the Entscheidungsproblem is unsolvable.

– Turing’s paper was considered to be of sufficient
interest and novelty to be worth publishing none-
theless, but he was asked to add an Appendix.

Turing is “Scooped” by Church

142

Turing’s Appendix proves in outline “The
theorem that all effectively calculable
(λ-definable) sequences are computable [by
a Turing machine] and its converse” (p. 290)
– See Petzold Chapter 15 for much more on the

Lambda Calculus etc.; also pp. 325-31.

In Volume 2 of The Journal of Symbolic
Logic (1937), Turing’s “Computability and
λ-definability” provided a more rigorous proof.
The new paper starts as follows:

Turing’s Appendix

143

“Several definitions have been given to express an
exact meaning corresponding to the intuitive idea of
‘effective calculability’ as applied for instance to
functions of positive integers. The purpose of the
present paper is to show that the computable functions
introduced by the author are identical with the λ-defin-
able functions of Church and the general recursive
functions due to Herbrand and Gödel and developed by
Kleene. It is shown [below] that every λ-definable
function is computable and that every computable
function is general recursive.” (Petzold, p. 298)

– Church and Stephen Kleene (also in 1936) had already
proved that recursive and λ-definable functions coincide,
so it indeed followed that all three notions are equivalent.

144

It seems hard in principle – and maybe even
philosophically dubious – to attempt to prove
a thesis which identifies an informal notion
(i.e. “effective calculability”) with a formal
notion (e.g. “Turing-machine computability”).

But it is striking that all plausible attempts to
give a formal precisification of the informal
notion have turned out to be equivalent.

– This explains why the C-T Thesis is so widely
endorsed, though it remains controversial.

Assessing the Church-Turing Thesis

139 140

141 142

143 144

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

145

§10 presents a range of results, including:
– various combinations of computable functions must be

computable (pp. 240-1, some are proved at 247-56);

– the root of a computable function that crosses zero is
computable (p. 244), as is the limit of any “computably
convergent sequence” (p. 246);

– “The sum of a power series whose coefficients form a
computable sequence is a computable function in the
interior of its interval of convergence.” (p. 247)

– π and e are computable (p. 247);

– “all real algebraic numbers are computable” (p. 247).

§10 Examples of Large Classes of
Numbers which are Computable

146

§11 finally comes round to Hilbert’s famous
Entscheidungsproblem, the inspiration for the
entire paper (even though the invention of the
Turing machine has since been seen as of
massive independent significance).

Turing proves that this is insoluble using the
earlier lemma, and showing that for any
machine M , it is possible to construct a formula
of predicate logic that is equivalent to the
statement that M at some point prints an “0”.

§11 Application to the
Entscheidungsproblem

147

Turing refers to Hilbert’s presentation of “the
restricted functional calculus” (i.e. what we
call predicate logic without identity). Turing
then presents his goal as follows:

“I propose, therefore, to show that there can be
no general process for determining whether a
given formula U of the functional calculus K is
provable, i.e. that there can be no machine which,
supplied with any one U of these formulae, will
eventually say whether U is provable.” (p. 260)

He explains (pp. 261-2) that this result is
quite different from Gödel’s, as we saw in the
second lecture (slide 59).

148

As Turing remarks (p. 262), the proof appears
“somewhat lengthy [but] The underlying ideas are
quite straightforward.”

As illustrated in the next slide, he defines predicates
adequate to describe the configuration and
behaviour of Turing machines (pp. 263-7).

Using these predicates (or “propositional functions”),
he defines, given any machine M , his key formula
Un(M), expressing the implication from that
machine’s specification to the consequence that a
zero will be printed (p. 267). By the earlier lemma
(slides 132-5), this will in general be undecidable.

From Machines to Predicate Logic

149

𝐼 𝑥, 𝑦 p. 264

In the complete configuration x,
the square y is scanned.

𝐾 𝑥 p. 264

In the complete configuration x,
the m-configuration [i.e. state] is 𝑞 .

𝑅 𝑥, 𝑦 p. 263

In the complete configuration x (of M),
the symbol on the square y is 𝑆 .

Three Predicates: Scan/State/Symbol

150

These predicates enable us to specify any complete
configuration of a Turing machine, in terms of the step
number (or “cycle”) of that configuration.

The Turing Machine rules (i.e. quintuples or machine
table) specify what should happen in moving from one
cycle to the next. The next few slides explain how
Turing represents this (and can usefully be read together
with p. 265-6). To do so, he also needs a predicate for
numerical succession (which he had introduced earlier
at p. 225, in preparation for discussing Peano’s axioms):

𝐹(𝑥, 𝑦) p. 264

y is the immediate successor of x (i.e. 𝑦 = 𝑥 + 1).

Expressing Turing Machine Rules

145 146

147 148

149 150

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

151

Suppose our machine includes quintuple qi Sj Sk L ql

and that in cycle x of this machine, square y is
scanned, in state qi and while containing symbol Sj

(so the quintuple would apply on that cycle).

Applying the quintuple, then: in the next cycle x′,
square y will change to symbol Sk

and the machine
will move left (to scan square y′) and into state ql.
Clearly 𝑥 = 𝑥 + 1 and 𝑦 = 𝑦 − 1, so we have:

𝐹 𝑥, 𝑥′ & 𝐹 𝑦′, 𝑦

and for the two cycles a scan/state/symbol formula:

Cycle x 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦

Cycle x' 𝐼 𝑥′, 𝑦′ & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦

Scanned square State Symbol 152

We also need to express that all squares other than y will
contain the same symbol in cycles x and x'.

This yields the following formula (which Turing abbreviates
as “Inst {qi Sj Sk L ql}”, p. 265) to express that quintuple:

(x, y, x', y') x, y, x', and y'

{ 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦 IF cycle x scan/state/symbol

& 𝐹 𝑥, 𝑥′ & 𝐹 𝑦′, 𝑦 & x' = x+1, y' = y-1

→ THEN

(𝐼 𝑥′, 𝑦′ & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦 cycle x' scan/state/symbol

& (z) [𝐹 𝑦′, 𝑧 & z [either z=y (i.e. y'+1)

 ([𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧] & or square z keeps

[𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧] & …])])} the same symbol]

153

The formulae for Inst {qi Sj Sk R ql} and Inst {qi Sj Sk N ql} – to
deal with quintuples in which the machine moves right or
stays on the same square – will differ accordingly.

Thus Inst {qi Sj Sk R ql} will be the formula (p. 266):

(x, y, x', y') x, y, x', and y'

{ 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦 IF cycle x scan/state/symbol

& 𝐹 𝑥, 𝑥′ & 𝐹 𝑦, 𝑦′ & x' = x+1, y' = y+1

→ THEN

(𝐼 𝑥′, 𝑦′ & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦 cycle x' scan/state/symbol

& (z) [𝐹 𝑧, 𝑦′ & z [either z=y (i.e. y'-1)

 ([𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧] & or square z keeps

[𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧] & …])])} the same symbol]
154

Inst {qi Sj Sk N ql} involves no machine movement, but we
still keep y' in the formula in order to express the identity of
z with y (we cannot write “z=y”, since Hilbert’s restricted
functional calculus does not include the identity sign):

(x, y, x', y') x, y, x', and y'

{ 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦 IF cycle x scan/state/symbol

& 𝐹 𝑥, 𝑥′ & 𝐹 𝑦, 𝑦′ & x' = x+1, y' = y+1

→ THEN

(𝐼 𝑥′, 𝑦 & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦 cycle x' scan/state/symbol

& (z) [𝐹 𝑧, 𝑦′ & z [either z=y (i.e. y'-1)

 ([𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧] & or square z keeps

[𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧] & …])])} the same symbol]

155

Every quintuple in machine M can be represented
by one of these long formulae – which we have
abbreviated as Inst {qi Sj Sk N ql} , Inst {qi Sj Sk N ql}
or Inst {qi Sj Sk N ql}. We then take the conjunction
of all these (pp. 267, 311), and call that Des(M).
– Thus Des(M) gives a complete description, in

predicate logic, of the operation of M ’s machine table.

Following the strategy explained in slide 148
above, Turing next uses Des(M) to create another
formula, representing the statement that M will at
some point print a zero (character S1) on its tape.

From Machine Description To
(Undecidable) Zero-Print Statement

156

A complication here is that Turing needs to specify
the relevant properties of the number sequence
(corresponding to the sequence of configurations).

These properties are captured by Peano’s Axioms,
of which this is one version (see Petzold p. 223):
1. Zero is a number.

2. Every number has a successor that is also a number.

3. Zero is not the successor to any number.

4. Two numbers that are the successors to the same
number are equal.

5. If P(0) is true, and if P(x) implies P(successor(x)) for all
numbers x, then P(x) is true for all numbers x.

Peano’s Axioms

151 152

153 154

155 156

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

157

Turing’s original paper slips up in defining the Peano
conditions (pp. 226-7, 267-8). He provided a correction
(pp. 268, 311), which usesQ as an abbreviation for:

 (𝑥)(∃𝑤)(𝑦, 𝑧)

𝐹 𝑥, 𝑤 & 𝐹 𝑥, 𝑦 → 𝐺 𝑥, 𝑦

& (𝐹 𝑥, 𝑧 &𝐺 𝑧, 𝑦 → 𝐺 𝑥, 𝑦)

&
𝐺 𝑧, 𝑥 (𝐺 𝑥, 𝑦 &𝐹 𝑦, 𝑧)

 (𝐹 𝑥, 𝑦 &𝐹 𝑧, 𝑦) → (¬𝐹 𝑥, 𝑧)

If x is any number, there is some w which is the successor of x,
and for all y and z, if y is a successor of x then y is greater than x,

and if z is a successor of x and y is greater than z then y is greater than x,
and if either x is greater than z,

or y is greater than x and z is a successor of y,
or y succeeds both x and z,

then z is not a successor of x.

(But even this isn’t ideal, e.g. it doesn’t rule out branching.) 158

The formula Un(M) for machine M, which is in
general undecidable, is as follows (pp. 268, 311):

(u) [Q & (𝑦)𝑅 𝑢, 𝑦 & 𝐼 𝑢, 𝑢 & 𝐾 𝑢 & Des(M)]
→ ∃𝑠 (∃𝑡)𝑅 𝑠, 𝑡

– Apart from Q and Des(M), the antecedent of this
conditional states that there is some u (namely zero), the
number of a configuration (i.e. the initial one) in which:
(R) S0, the blank, is on every square; (I) square zero is
scanned; and (K) the machine is in state q1.

– The consequent says that there exist some s and t such
that S1, the zero symbol, appears on square t of the tape
in cycle (i.e. configuration number) s.

The Undecidable Formula Un(M)

159

Now Turing sets out to prove two lemmas,
connecting the provability of Un(M) with
the appearance of S1 (“0”) on the tape
when machine M runs:

– Lemma 1 (pp. 269-76): “If S1 appears on the
tape in some complete configuration of M ,
then Un(M) is provable”.

– Lemma 2 (pp. 276-77): “If Un(M) is provable,
then S1 appears on the tape in some complete
configuration of M ”.

Two Lemmas To Prove

160

To prove Lemma 1, Turing formulates a sequence
of formulae CC0, CC1, CC2, etc., representing the
sequence of complete configurations as M
proceeds (p. 271).

Here he uses an earlier abbreviation (from p. 268),
with “A(M)” standing for:

Q & (𝑦)𝑅 𝑢, 𝑦 & 𝐼 𝑢, 𝑢 & 𝐾 𝑢 & Des(M)

He also uses “F(n)” to abbreviate the numeric
successor relations (from 0 up to n inclusive).

He then shows, by induction, that “all formulae of
the form A(M) & F(n) → CCn are provable” (p. 272:
base case pp. 272-3; induction step pp. 273-5).

161

Lemma 1 follows because, assuming that “0”
(i.e. S1) does indeed appear on the tape in
configuration n (say), then CCn (which
includes all relevant 𝑅 𝑛, 𝑦 conjuncts), must
include 𝑅 𝑛, 𝑦 for some square y.

Lemma 2 – that if Un(M) is provable, then S1

appears in some complete configuration of M
– must be true (p. 277) from substitution of
the relevant propositional functions in Un(M).

Thus (p. 277), referring back to the lemma of
§8, “We are now in a position to show that
the Entscheidungsproblem cannot be solved”.

162

To sum up, the lemma of §8 proved that no
machine can be constructed which will reliably
determine whether any specified machine will
ever print a “0”.

But since that behaviour (printing a “0”, or not
doing so) can be captured by a predicate logic
formula Un(M), it follows that no machine can
be constructed which will reliably determine
whether or not that formula is provable.

Hence Hilbert’s Entscheidungsproblem – to
devise a mechanical procedure to determine
whether or not any predicate logic formula is
provable, has no solution. QED!!

157 158

159 160

161 162

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford

Lecture 6
“Computing Machinery

and Intelligence”:
Overview of Turing’s 1950 Paper

164

Useful Books

Books on the Philosophy of AI
– Jack Copeland, Artificial Intelligence: A

Philosophical Introduction (Blackwell, 1993).

– Margaret A. Boden (ed.), The Philosophy of
Artificial Intelligence (OUP, 1990).

– Douglas R. Hofstadter and Daniel C. Dennett
(eds), The Mind’s I (Penguin, 1981).

The Chinese Room Argument
– John Searle, Minds, Brains and Science

(Penguin, 1989).

165

Useful Collections of Papers

On the Turing Test
– S. Barry Cooper and Jan van Leeuwen (eds),

Alan Turing: His Work and Impact (Elsevier,
2013) – has a range of papers on the Turing Test.

– Peter Millican and Andy Clark (eds), Machines
and Thought (OUP, 1996) – the introduction and
the first seven papers are relevant.

On the Chinese Room Argument
– John Preston and Mark Bishop (eds), Views into

the Chinese Room (OUP, 2002).

166

Useful Web Resources

Stanford Encyclopedia of Philosophy
– At http://plato.stanford.edu/ - see articles on:

“The TuringTest”

“The Chinese Room Argument”

Web Resources on the Turing Test
– On Andrew Hodges’ “Alan Turing” website, the

paper “Alan Turing and the Turing Test”:
http://www.turing.org.uk/publications/testbook.html

– Ayse Pinar Saygin, Ilyas Cicekli & Varol Akman,
“Turing Test: 50 Years Later”: http://www.cs.bilkent.
edu.tr/~akman/jour-papers/mam/mam2000.pdf

167

Robin Gandy, Turing’s student, wrote:
– “The 1950 paper was intended not so much as a

penetrating contribution to philosophy but as
propaganda. … He wrote this paper – unlike his
mathematical papers – quickly and with enjoyment.
I can remember him reading aloud to me some of
the passages – always with a smile, sometimes
with a giggle. Some of the discussions of the paper
… load it with more significance than it was
intended to bear.”

(in Millican & Clark (eds) 1996, p. 125)

Turing’s 1950 Paper: “Computing
Machinery and Intelligence”

168

§1 The Imitation Game

Turing starts his paper a bit confusingly:

– “I propose to consider the question, ‘Can
machines think?’ …”

– “If the meaning of the words ‘machine’ and
‘think’ are to be found by examining how they
are commonly used … the answer … is to be
sought in a statistical survey. But this is
absurd. Instead … I shall replace the
question by another, which is closely related
to it … [but] relatively unambiguous.”

163 164

165 166

167 168

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

169

Turing’s replacement question is set in the
context of an “imitation game”, which is first
introduced in a form requiring an interrogator,
C, to guess the gender of two participants
(a man, A, and a woman, B), based on the
answers they give to C’s questions.

The man, A, attempts by his answers to
convince C that he is the woman and B is the
man. The woman, B, attempts to convince C
that she is indeed the woman.

The Gender Imitation Game

The Judge or “Interrogator”

The man pretends to be a woman. If the
interrogator can’t reliably distinguish them from
their verbal responses, then the man succeeds.

“My hair is shingled, and the longest
strands are about nine inches long”

“I am the woman, don’t listen to him!”

171

The interrogator obviously needs to be in a
different room from the participants, so as
to be unable to see them. But further:
– “In order that tones of voice may not help the

interrogator the answers should be written, or
better still, typewritten. The ideal
arrangement is to have a teleprinter
communicating between the two rooms.”

– Communicating text by teleprinter also makes
the game easily extendable to a computer …

Constraints on the Game

172

“We now ask …, ‘What will happen when a machine
takes the place of A (the deceitful man) in this
game?’ Will the interrogator decide wrongly as
often when the game is played like this as he does
when the game is played between a man and a
woman? These questions replace our original, ‘Can
machines think?’”

The relationship between these questions and the
original is left obscure. And it’s not clear (until §2
and §5) that the computer’s role is to imitate a
human (“man”) rather than specifically a woman.

The Computer Imitation Game

The Turing Test

The Judge or “Interrogator”

If the interrogator can’t reliably distinguish the
computer from the human, then the computer
program must be judged to be intelligent. 174

§2 helps to clarify Turing’s idea: the interro-
gator’s questions can be used to elicit the
computer’s “knowledge” about “almost any …
of the fields of human endeavour”, e.g. poetry
composition, arithmetic, or chess.

The teleprinter setup “has the advantage of
drawing a fairly sharp line between the
physical and the intellectual capacities of a
man”. In the paper “it will be assumed that the
best strategy is to try to provide answers that
would naturally be given by a man”.

§2 Critique of the New Problem

169 170

171 172

173 174

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

175

Flexibility of the Q&A Format

Q: Please write me a sonnet on the subject of the Forth
Bridge.

A: Count me out on this one. I never could write poetry.

Q: Add 34957 to 70764.

A: (Pause about 30 seconds and then give as answer)
105621.

Q: Do you play chess?

A: Yes.

Q: I have K at my K1, and no other pieces. You have only
K at K6 and R at R1. It is your move. What do you play?

A: (After a pause of 15 seconds) R-R8 mate.
176

But Turing notes the possible objection: “May not
machines carry out something which ought to be
described as thinking but which is very different
from what a [human person] does?”

He responds: “This objection is a very strong
one, but at least we can say that, if, nevertheless,
a machine can be constructed to play the
imitation game satisfactorily, we need not be
troubled by this objection.”
– This seems to be suggesting that success in the

imitation game is sufficient to prove intelligence,
but not a necessary condition.

Bias in Favour of Human Thought?

177

Later, in§6 (4), Turing will give an example of
a viva voce examination, concerning the choice
of words in a poem, which seems quite
convincing as a demonstration of intelligence.
– If conversation of this level of sophistication and

focus were to be produced by a computer over a
wide range of topics, in a way that involved
appropriate meaning-sensitive processing and
without any form of “cheating” (e.g. use of “canned”
responses”), it might indeed be hard to deny that
the machine was demonstrating “intelligence”.

The Viva Voce Example

178

Interrogator: In the first line of your sonnet which reads
“Shall I compare thee to a summer’s day”, would not “a
spring day” do as well or better?

Witness: It wouldn’t scan.

How about “a winter’s day”? That would scan all right.

Yes, but nobody wants to be compared to a winter’s day.

Would you say Mr. Pickwick reminded you of Christmas?

In a way.

Yet Christmas is a winter’s day, and I do not think Mr.
Pickwick would mind the comparison.

I don’t think you’re serious. By a winter’s day one means
a typical winter’s day, rather than a special one like
Christmas.

179

“It is natural that we should wish to permit
every kind of engineering technique to be
used in our machines”, including experimental
techniques that result in a machine whose
operation is unclear even to the engineers;

However “we wish to exclude from the
machines men born in the usual manner”.

Seeking for an appropriate rule to do this,
Turing restricts his test to digital computers.

§3 The Machines concerned
in the Game

180

“The idea behind digital computers [is] that
these machines are intended to carry out
any operations which could be done by a
human computer.” – here we see clear
echoes of the 1936 paper.

Turing then gives an outline of how a
digital computer might operate, remarking
that “they can in fact mimic the actions of a
human computer very closely”.

§4 Digital Computers

175 176

177 178

179 180

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

181

Turing considers some particular cases:

– A “digital computer with a random element”, which
can be simulated by including a pseudo-random
process (e.g. using digits of π).

– A “computer with an unlimited store”; “Such
computers have special theoretical interest and
will be called infinitive capacity computers”.

He ascribes the idea of a digital computer to
Charles Babbage, thus illustrating that they
can be mechanical and need not be electrical.

Varieties of Digital Computer

182

Even if processes in the world are really continuous
(and chaotic – Turing here gives an illustration of
what is now known as the “butterfly effect”), some of
them can be usefully modelled as discrete.

The behaviour of “discrete state machines” is utterly
predictable, and “There is no reason why this
calculation should not be carried out by means of a
digital computer. Provided it could be carried out
sufficiently quickly the digital computer could mimic
the behaviour of any discrete state machine.”

Thus digital computers “are universal machines.”

§5 Universality of Digital Computers

183

Because digital computers are universal,
the Imitation Game question reduces to:

– “Let us fix our attention on one particular digital
computer C. Is it true that by modifying this
computer to have an adequate storage, suitably
increasing its speed of action, and providing it with
an appropriate programme, C can be made to play
satisfactorily the part of A in the imitation game,
the part of B being taken by a man?”

– Apparently C is supposed to be imitating a human,
rather than playing a gender-related game.

The Programming Question

184

Turing now sketches his own views on “our question,
‘Can machines think?’ and the variant of it quoted at
the end of the last section.”

He then considers, and rejects, nine objections:
(1) “Theological”, (2) “Heads in the Sand”,
(3) “Mathematical”, (4) “The Argument from
Consciousness”, (5) “Arguments from Various
Disabilities”, (6) Lady Lovelace’s Objection, (7)
“Argument from Continuity in the Nervous System, (8)
“The Argument from Informality of Behaviour”, and (9)
“The Argument from Extra-Sensory Perception”.

§6 Contrary Views on the Main Question

185

Before considering the objections, however,
Turing offers his own predictions:
– “I believe that in about fifty years’ time it will be

possible to programme computers, with a storage
capacity of about 10 , to make them play the imitation
game so well that an average interrogator will not have
more than 70 per cent. chance of making the right
identification after five minutes of questioning.”

– “The original question, ‘Can machines think?’ I believe
to be too meaningless to deserve discussion. Never-
theless I believe that at the end of the century the use
of words and general educated opinion will have alter-
ed so much that one will be able to speak of machines
thinking without expecting to be contradicted.”

186

“Thinking is a function of man’s immortal soul.
God has given an immortal soul to every man and
woman, but not to any other animal or to mach-
ines. Hence no animal or machine can think.”
– Turing suggests it would be more persuasive to rank

animals with people, and criticises the arbitrariness
of religious views (e.g. that women don’t have souls).

– But suppose there are souls given by God – why
shouldn’t He give one to a computer?

– Turing alludes to Galileo: as knowledge advances,
religious dogmas can come to seem obsolete.

(1) The Theological Objection

181 182

183 184

185 186

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

187

“The consequences of machines thinking would
be too dreadful. Let us hope and believe that they
cannot do so.”
– Turing suggests that this concern, though “seldom

expressed quite so openly”, often motivates those
who are opposed to the idea of machine intelligence.

– We like to think that we are “superior to the rest of
creation”, and “intellectual people ... value the power
of thinking more highly than others”.

– “Consolation” is more appropriate than refutation:
“perhaps ... in the transmigration of souls.” Here
Turing seems to be having fun, as Gandy suggested.

(2) The “Heads in the Sand” Objection

188

These objections are based on the results
of “Gödel, … Church, Kleene, Rosser, and
Turing” that demonstrate the limited power
of “discrete-state machines”.

– They may fail on questions of the type:
“Consider the machine specified as follows ... Will
this machine ever answer ‘Yes’ to any question?”

– But humans also have limitations, and super-
iority over one particular machine is quite
different from superiority over any machine.

(3) The Mathematical Objection

189

Turing quotes from Geoffrey Jefferson’s
1949 “Lister Oration”:

– “Not until a machine can write a sonnet or compose
a concerto because of thoughts and emotions felt,
and not by the chance fall of symbols, could we
agree that machine equals brain – that is, not only
write it but know that it had written it.”

– “No mechanism could feel (and not merely artificially
signal, an easy contrivance) pleasure at its success-
es, grief when its valves fuse, be made miserable ...,
be charmed ..., be angry or depressed ...”

(4) The Argument from Consciousness

190

Turing’s answer to Jefferson starts with
some amusing (but dubious) rhetoric:

“This argument appears to be a denial of the
validity of our test. According to the most extreme
form of this view ... the only way to know that
[either a machine or] a man thinks is to be that
particular man. It is in fact the solipsist point of
view. It may be the most logical view to hold but it
makes communication of ideas difficult. A is liable
to believe ‘A thinks but B does not’ ... Instead of
arguing continually over this point it is usual to
have the polite convention that everyone thinks.”

Turing’s Response to Jefferson

191

Turing goes on to give his viva voce example
about the sonnet (picking up on Jefferson’s
reference to sonnet composition):

– “What would ... Jefferson say if the sonnet-writing
machine was able to answer like this in the viva-
voce? I do not know whether he would regard
the machine as ‘merely artificially signalling’ these
answers, but if the answers were as satisfactory
and sustained as in the above passage I do not
think he would describe it as ‘an easy
contrivance’. … In short, then, I think that most
of those who support the argument from
consciousness could be persuaded to abandon it
rather than be forced into the solipsist position.”

192

Interrogator: In the first line of your sonnet which reads
“Shall I compare thee to a summer’s day”, would not “a
spring day” do as well or better?

Witness: It wouldn’t scan.

How about “a winter’s day”? That would scan all right.

Yes, but nobody wants to be compared to a winter’s day.

Would you say Mr. Pickwick reminded you of Christmas?

In a way.

Yet Christmas is a winter’s day, and I do not think Mr.
Pickwick would mind the comparison.

I don’t think you’re serious. By a winter’s day one means
a typical winter’s day, rather than a special one like
Christmas.

187 188

189 190

191 192

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

193

There are two quite different lines of thought
here, which Turing would have done well to
distinguish:

– Jefferson is “denying the validity” of the Turing
test because it does not test for genuine
consciousness, and genuine consciousness
(rather than “artificial signalling”) is necessary
for intelligence.

– “Artificial signalling” of apparent emotions is
unworthy of being deemed intelligent because it
is an “easy contrivance”.

Two Distinct Lines of Thought

194

Turing’s response to the second point (on the
alleged “easy contrivance”) is much stronger
than his response to the first (regarding
consciousness, solipsism etc.).

He would have been better to say, after giving
the sonnet example (and others):

– “if the answers were as satisfactory and sustained
as in the above passage ... then there would be
reason to call the machine ‘intelligent’ irrespective
of whether or not it has genuine feelings.
Intelligence need not require consciousness.”

A Better Response

195

A machine could not, allegedly, be kind, beautiful,
friendly, have initiative, have a sense of humour, tell
right from wrong, make mistakes, fall in love, enjoy
strawberries and cream, learn from experience, use
words properly, be the subject of its own thought,
do something really new.

The limited machines of 1950 could not do these,
but it requires argument to show than none could.

Several of these alleged limits seem just to take us
back to the argument from consciousness.

(5) Arguments from Various
Disabilities

196

Turing remarks on the oddity of one objection:
– “The claim that ‘machines cannot make mistakes’

seems a curious one. One is tempted to retort,
‘Are they any the worse for that?’ ...”

He goes on to distinguish ‘errors of
functioning’ from ‘errors of conclusion’:
– A machine could be programmed so that it

functions so as to make errors in its conclusions,
precisely to imitate a human more convincingly.

– But it still seems odd that Turing’s Test might
count better performance against the machine!

Machines Can Make Mistakes

197

Turing quotes Ada Lovelace (1842, note G):
“[Charles Babbage’s] Analytical Engine has no
pretentions to originate anything. It can do
whatever we know how to order it to perform”.

In response, Turing points out that:
– We are fallible, and can often surprised by the

novel consequences of our actions, views, and
the instructions that we give to machines;

– Claiming that we are creative in a special way
leads back to the consciousness argument.

(6) Lady Lovelace’s Objection

198

To be fair to Ada Lovelace, we should note her
visionary anticipation of computer creativity in
her note A on Babbage’s Analytical Engine:

“The operating mechanism … might act upon other things
besides number, were objects found whose mutual
fundamental relations could be expressed by those of the
abstract science of operations, and which should be also
susceptible of adaptations to the action of the operating
notation and mechanism of the engine. Supposing, for
instance, that the fundamental relations of pitched sounds
in the science of harmony and of musical composition
were susceptible of such expression and adaptations, the
engine might compose elaborate and scientific pieces of
music of any degree of complexity or extent.”

https://www.fourmilab.ch/babbage/sketch.html

193 194

195 196

197 198

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

199

“The nervous system is certainly not a discrete-
state machine. A small error in the information
about the size of a nervous impulse impinging
on a neuron, may make a large difference to
the size of the outgoing impulse.”

In response, Turing points out that a discrete-
state machine could mimic a continuous
system sufficiently closely that a human would
find it extremely hard to tell the difference.

(7) Argument from Continuity
in the Nervous System

200

Turing reduces this argument to:
“If each man had a definite set of rules of con-
duct by which he regulated his life he would be
no better than a machine. But there are no
such rules, so men cannot be machines.”

– He points out that formally it is a fallacy
(R M is not the same as M R).

– Moreover it is hard to establish that we are not
in fact governed by “laws of behaviour” (to be
distinguished from “rules of conduct”)

(8) The Argument from
Informality of Behaviour

201

Turing’s sympathy towards telepathy, clairvoy-
ance, precognition and psycho-kinesis might
seem surprising: “the statistical evidence, at
least for telepathy, is overwhelming”.
– Few would now agree with this, but Turing was

apparently impressed with the work of J. B. Rhine
(see Hodges’ biography, p. 416).

– Turing seems also to assume that if extra-sensory
perception were possible, no machine could mimic
this, so we might need a “telepathy-proof room”.

(9) The Argument from
Extra-Sensory Perception

202

Turing admits at the beginning of §7 that
– “I have no very convincing arguments of a

positive nature to support my views.”

Since his view is centred on performance in
the imitation game (i.e. the “Turing test”),
– “The only really satisfactory support that can

be given for the view expressed at the
beginning of §6, will be that provided by
waiting for the end of the century and then
doing the experiment.”

§7 Learning Machines

203

After a discussion of technological needs
(storage of around 10 , speed around 1,000
times faster than nerve cells), he focuses on
the problem of programming a machine to
play the game successfully.

The solution, he suggests, may be to try to
simulate a baby’s mind rather than an adult’s,
and provide it with the ability to learn.
– Here Turing’s discussion seems quite unrealistic,

but he did not have the advantage of our further
60 years of experience, which have shown how
difficult it is to implement general learning systems
to compete with the products of evolution.

204

One important point Turing makes here is that a
learning machine is highly likely to behave in ways
that its programmers could neither foresee nor
understand, and also to make “mistakes”. Trial and
error learning, in particular, requires some element of
randomness.

“Many people think that a very abstract activity, like
the playing of chess” might be a good place to start in
attempting to match human intelligence.

But perhaps instead “it is best to provide the machine
with the best sense organs that money can buy, and
then teach it to understand and speak English” so that
it could then “follow the normal teaching of a child.”

On this uncertain note, the paper ends.

199 200

201 202

203 204

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford

Lecture 7
Blockhead, the Chinese

Room, and ELIZA

206

In 1981, Ned Block attacked the Turing
Test on the grounds that it can be passed
by a mindless machine.
– His postulated machine, widely known as

“Blockhead”, works by storing every possible
“sensible” conversation of a given length, and
choosing its responses accordingly.

– Something working so mindlessly, by a
mechanism that involves no understanding,
surely cannot be called intelligent, but it will
always generate sensible conversation!

BlockHead

207

How many “sensible” conversations are there,
involving 10 short sentences (average 10
words) from each of the two participants?

Suppose on average each word is chosen
from a limited menu of 100 choices.
– Number of conversations 100200 = 10400.

– The known universe contains around 1080 atoms.
Replace each atom with a complete universe
(making 10160 atoms). Repeat three more times
(10240, 10320, 10400) – that gets you to this number
of conversations (and these are only short ones)!

A Reality Check

208

Imagine a system that exhibits some
impressive behaviour. In attributing
intelligence to it, we could mean either:
– That behaviour is definitive of intelligence:

anything that behaves like that is ipso facto
correctly described as “intelligent”.

– That behaviour provides strong evidence of
intelligence, because it could only plausibly be
generated by something with the capacity for
sophisticated information processing (etc.).

An Important Distinction

209

Our “intuitive” judgements in response to
Blockhead (etc.) suggest that our notion of
intelligence involves not just impressive
behaviour, but impressive behaviour
generated “cleverly” with limited resources
(e.g. of storage, information, and time).

– Note that in practice, the two come to the same
thing. Thought-experiments can float free of any
plausible reality, but in practice, appropriately
flexible and timely responses to a rapidly changing
situation are achievable only by clever processing.

Intelligence and Resources

210

Consider the following thought-experiment:
“suppose that someone were to write a computer
program of only around 50 lines of code (in a
standard general programming language), which
could play chess at a grandmaster level in real
time. Such a crude program could not possibly
count as genuinely intelligent. Hence grand-
master performance at chess is not a reliable proof
even of intelligent chess-playing.”

The same argument can be made about any
domain, so apparently we can never take
expert performance as proving intelligence!
– But like Blockhead, this scenario isn’t remotely

plausible, so we should refuse to be persuaded.

205 206

207 208

209 210

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

211

“If you look at the history of philosophy, you see that all the
great and influential stuff has been technically full of holes
but utterly memorable and vivid. They are what I call
‘intuition pumps’ — lovely thought experiments. Like Plato's
cave, and Descartes's evil demon, and Hobbes' vision of the
state of nature and the social contract, and even Kant's idea
of the categorical imperative. I don't know of any
philosopher who thinks any one of those is a logically sound
argument for anything. But they're wonderful imagination
grabbers, jungle gyms for the imagination. They structure
the way you think about a problem. These are the real
legacy of the history of philosophy.”

Daniel Dennett, in The Third Culture, ed. Brockman

Thought-Experiments as “Intuition Pumps”

212

The classical intuition pumps to which Dennett
refers are designed to illuminate one thing – say
the nature of the world, or the social order – by
harnessing our familiar understanding of
something else – shadows cast by a fire in a
cave, or contracts between individuals.

– We are thus encouraged to see the one thing as
relevantly similar to the other.

– Computer analogies can also work in this way,
e.g. comparing the mind to a computer program,
or religion to a computer virus (Dawkins).

But different analogies can easily suggest quite
different conclusions …

213

John Searle’s famous thought-experiment
involves a conversation conducted in written
Chinese by means of cards posted into and
out of a room with a single occupant:

– incoming cards express meaningful questions,
written by a competent Chinese speaker;

– outgoing cards – written by the man within the
room – provide meaningful and appropriate
answers to those questions (such as might be
produced by a competent and intelligent native
speaker of Chinese).

Searle’s “Chinese Room”

214

But the man inside the room has no knowledge
whatever of the Chinese language or of the
semantics – the meaning or significance – of the
symbols he is reading or writing.

Instead, he is generating his written “answers”
by strictly applying rules based purely on the
syntax – the shape and structure – of the
“question” character strings that he receives,
these rules being specified in books contained
within the room. Searle gives an example:

“Take a squiggle-squiggle sign out of basket
number one and put it next to a squoggle-squoggle
sign from basket number two.” (Searle 1984, p. 32)

215

This depiction of the scenario (from Wikimedia Commons) is
hopelessly unrealistic, like a grandmaster chess program of
only 50 lines. Vladimir Mikulik has kindly created an image
that far better captures the complexity of the situation …

216

211 212

213 214

215 216

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

217

In the original version of the Chinese Room (in
“Minds, Brains, and Programs”, Behavioral and
Brain Sciences 3, 1980, pp. 417-24), questions
are limited to testing the man’s comprehension
of a fixed story written in Chinese.

In the more famous later version (in Minds,
Brains & Science, 1984, p. 32), there is no
such restriction: the questions can apparently
be as varied as those in the Turing Test.
– This takes the required processing to a whole new

level of sophistication (and implausibility!).

Chinese Variations

218

Clearly the man in the room does not
understand Chinese, despite the fact that he is
generating meaningful replies.

Searle draws the moral that:

– “Understanding a language, or indeed having mental
states at all, involves more than just having a bunch
of formal symbols. It involves having an interpret-
ation, or a meaning attached to those symbols.
[Computer] programs [like the rules followed by the
man in the room] are purely formally specifiable – that
is, they have no semantic content.” (1984, p. 33)

Searle’s Conclusion

219

Most of the time, Searle expresses his thesis as
a denial of “intentionality” or “semantic content”.

But he also denies that digital machines can
have “a mind”, “mental states”, “mental content”,
“cognitive states”, or “cognitive processes”.

And he describes his argument as attacking the
claim of “strong artificial intelligence”, that digital
machines can “think” or have “consciousness”.

(For examples of these phrases, see Searle
1980, p. 417; 1984, pp. 36-7; 2002 §I, p. 56.)

What Exactly is Searle Denying?

220

Searle is often interpreted as arguing that
“machines cannot think”, but he accepts that we
are thinking “machines” (in the sense of physical
things working according to natural laws).

When most cautious, he seems to be objecting to
the idea that digital computers can have semantic
(i.e. meaningful, genuinely intentional) states
purely in virtue of following a symbolic algorithm.

– But he often seems to go significantly beyond this
cautious interpretation (e.g. when addressing the
“robot reply”, which we consider shortly).

The Cautious Interpretation

221

Many argue that, though the man in the room does
not understand Chinese, the system of which he is
a part does (as shown by its intelligent responses).

Searle rebuts this as follows:
“They argue that it is the whole system, including the
room, the baskets full of symbols and the ledgers
containing the programs and perhaps other items as
well, taken as a totality, that understand Chinese. But
this is subject to exactly the same objection … There is
no way that the system can get from the syntax to the
semantics. I, as the central processing unit have no way
of figuring out what any of these symbols means; but
then neither does the whole system.” (1984, p. 34)

The System Reply

222

Copeland (1993, §6.2) argues strongly that
Searle’s rebuttal begs the question:

– As a matter of logic, the man’s lack of understanding
does not prove that the system of which he is a part
does not understand Chinese. (Compare the silly
argument: “Bill the cleaner has never sold pyjamas to
Korea; therefore Bill’s company has never sold …”)

– If Searle aims to prove that symbol manipulation
cannot produce understanding, he cannot appeal to
this thesis to defend himself against the System Reply.

– The Chinese Room might retain force as an “intuition
pump”, but it provides little force of argument here.

Copeland Presses the Attack

217 218

219 220

221 222

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

223

Note again Searle’s main point, that the symbol
processing performed by the man (or computer)
in the room involves no semantic content or
understanding of what the symbols signify.

A tempting response is to suggest that such
content could be given if the system were
embedded in the world: if it were responsive to
physical sensors, and could cause a robot to act.

Searle replies that the man in the room has no
understanding of any such inputs and outputs …

The Robot Reply

224

“As long as we suppose that the robot has only a
computer for a brain then, even though it might
behave exactly as if it understood Chinese, it
would still have no way of getting from the syntax
to the semantics of Chinese. You can see this if
you imagine that I am the computer. Inside a
room in the robot’s skull I shuffle symbols without
knowing that some of them come in to me from
television cameras attached to the robot’s head
and others go out to move the robot’s arms and
legs. As long as all I have is a formal computer
program, I have no way of attaching any meaning
to any of the symbols.”

(Searle 1984, pp. 34-5)

225

We’ll return to this discussion in the last
lecture, but for now, notice the intimate
contrariety between Searle’s Chinese
Room and the Turing test:

– Both thought-experiments postulate an
algorithmic system capable of generating
conversation that is indistinguishable in quality
from that of an intelligent native speaker;

– But they draw opposite conclusions, by
focusing on different aspects of the situation:

Searle versus Turing

226

Turing: “Imagine a computer program that
is able to converse like this …

... how could you possibly deny that it is
genuinely intelligent?”

Searle: “Imagine a computer program that
conducts its conversation using crudely
syntactic processes like this …

... how could you possibly claim that it is
genuinely intelligent?”

Contrary Intuitions

227

As in the case of Blockhead, we can inject
some realism by asking how plausible the
two thought-experiments are in practice.

– The Chinese Room (especially in its later
unrestricted version) is as wildly implausible as
Blockhead, supposing sophisticated linguistic
behaviour generated in real time by manually
consulting books of rules contained within a
room (with no scope for sensory input, real-time
updating, or emotional reaction etc.).

– Turing’s predictions seem more realistic …

Back to Reality

228

“I believe that in about fifty years’ time it will be possible
to programme computers, with a storage capacity of
about 10 , to make them play the imitation game so
well that an average interrogator will not have more
than 70 per cent. chance of making the right
identification after five minutes of questioning.”

“The original question, ‘Can machines think?’ I believe
to be too meaningless to deserve discussion. Never-
theless I believe that at the end of the century the use
of words and general educated opinion will have alter-
ed so much that one will be able to speak of machines
thinking without expecting to be contradicted.”

Turing’s Predictions from §6

223 224

225 226

227 228

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

229

So by 2000 “one will be able to speak of machines
thinking without expecting to be contradicted”. And
indeed by 2000 this conversation was plausible:

“Why is the computer taking so long to respond?”

“It’s thinking hard, because it’s realized that if it tries to
defend against my attack by bringing its knight over to
protect the king, I’ll be able to grab its pawn on the other
side. It’s displaying now that it assesses the position as
better for me materially, but it’s predicting that it won’t be
too badly off if it decides to let the pawn fall, so I think it
must be expecting to get some activity to compensate.”

A Correct Prediction?

230

Turing’s other prediction is that by 2000:

“… it will be possible to programme computers … to
make them play the imitation game so well that an
average interrogator will not have more than 70 per
cent. chance of making the right identification after
five minutes of questioning.”

This again looks plausible in retrospect. If
sustained and systematic research effort had been
directed towards this goal, it seems quite likely that
it could have been achieved by 2000.

― However the prediction is plausible for a bad reason!

Another Plausible Prediction, but …

231

Turing’s words naturally suggest a criterion for
progress towards machine intelligence, based on
how well the program can fool an “average
interrogator”, and for how long.

This has set the pattern for subsequent attempts
at “passing the Turing Test” (as illustrated in the
next slide), but this is highly regrettable, because

it turns out that fooling an average interrogator is
relatively easy to achieve, but not by techniques
that plausibly involve genuinely intelligent
information processing.

… an Unreliable Criterion

232

233

In 1966, Joseph Weizenbaum published his
ELIZA program and “DOCTOR” script,
showing how very simple text manipulation
could generate a plausible conversation.

– The “DOCTOR” plays the role of a Rogerian
psycho-therapist, largely echoing what the
human says, expressing sympathy etc., and
asking gentle questions to elicit their feelings.

– Computer responses are generated by making
small changes to the human inputs, exchanging
first- and second-person etc.

Weizenbaum’s ELIZA ELIZA in action

– Men are all alike.

– IN WHAT WAY?

– They're always bugging us about something
or other.

– CAN YOU THINK OF A SPECIFIC
EXAMPLE?

– Well, my boyfriend made me come here.

– YOUR BOYFRIEND MADE YOU COME
HERE?

– I need some help, that much seems certain.

– WHAT WOULD IT MEAN TO YOU IF YOU
GOT SOME HELP?

– Perhaps I could learn to get along with my
mother

– TELL ME MORE ABOUT YOUR FAMILY.

229 230

231 232

233 234

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

• My mother takes care of me.

• WHO ELSE IN YOUR FAMILY TAKES
CARE OF YOU?

• My father.

…

• WHAT ELSE COMES TO YOUR MIND
WHEN YOU THINK ABOUT YOUR
FATHER?

• Bullies.

• DOES THAT HAVE ANYTHING TO DO
WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME
HERE?

236

“… alike …” “IN WHAT WAY?”

“something or other” “FOR EXAMPLE?”

“My X” “YOUR X?”

“I need Y” “WHAT IF YOU GOT Y?”

“… my mother” “… YOUR FAMILY …”

“My mother …” “WHO ELSE …?”

<no matching pattern> “DOES THAT HAVE

ANYTHING TO DO WITH

YOUR X?”

Simple Patterns and Responses

237

Elizabeth: ELIZA’s Cleverer Sister

Elizabeth is an educational chatbot-creation
system, an adaptation of ELIZA in which the
various selection, substitution, and phrase
storage mechanisms have been enhanced
and generalised to increase both its
flexibility and its potential adaptability.

– The system also incorporates analysis tables
to show what processing has taken place,
thus providing a learning tool.

– Elizabeth can be downloaded from:
www.philocomp.net/ai/elizabeth

238

Experimentation with chatbots (e.g. the
ELIZA script available within Elizabeth)
can quickly strengthen one’s impression
that Searle is right: there is no semantics
here, only blind manipulation of syntax.

The script that runs “Eugene Goostman”,
the chatbot that supposedly “passed the
Turing Test” in 2014, follows the standard
ELIZA-style pattern. Faced with focused
questioning, it soon reveals its stupidity …

Chatbots are NOT Intelligent!

239 240

Where do you live?

I am from Ukraine, from the city called Odessa. You might have heard about it.

I have. Were you there on May 2?

Was I? I would rather not talk about it if you don't mind. Wonna ask me
something more?

I want to talk about this. Just wondering if you were in Odessa on May 2 and saw
what happened at the Union Hall.

I think you can answer your question yourself because it is rhetorical. Could you
tell me about your job, by the way?

I am a journalist.

Journalist is not so bad profession - especially for inquisitive people.

I am inquisitive. So did you see the fire at Union Hall on May 2?

What a stupid questions you ask! Did I forget it or you really haven't told me
about the place you are from?

…

So, about that fire in Odessa on May 2: Did you see it?

Odessa is a very big city - a kind of "Babylon," because there are lots of nation-
alities living there - Ukrainians, Russians, Jews, Greeks and many many more.

Leonid Bershidsky, on BloombergView

235 236

237 238

239 240

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

241

Chatbots (or chatterbots) can be genuinely
useful learning tools, one lesson being how
quickly one discovers their limitations!

But we can also benefit from our readiness
to interpret their output as “intelligent” :
– Most people prefer to interact conversationally.

– Automated “help” systems can be useful even if
their responses are pre-packaged.

– Chatbot methods can often succeed in eliciting
and identifying relevant information quickly.

Uses for Chatbots
MRS Connections, Barbican London,

22-24 March 2006

Using artificial
intelligence as a

data collection aid

Craig Kolb, Ask Afrika & Dr Peter Millican, Hertford College, Oxford University

Connecting with
eLizabeth

243

Turing acknowledged that passing his Test
wasn’t a necessary condition for intelligence.

But unless interpreted fairly rigorously, it’s not
sufficient either, because it’s too easy to pass
due to human lack of critical discernment!
– Much of our conversation is sloppy and careless;

– Hence we too easily interpret sloppy and careless
conversation as indicative of intelligence.

It’s a shame Turing gave the impression that
“better” performance in his Test gives a useful
criterion of relative intelligence – it doesn’t!

The Problem with the Turing Test

244

Implausible when interpreted as fooling “the
average interrogator” for a modest time.

– This is achievable by ELIZA-style pretence and
misdirection, rather than sophisticated and
explicit processing of information.

More plausible as a sufficient condition for
intelligence when interpreted more stringently
(cf. Turing’s sonnet conversation).

– But then seems inappropriately demanding in
terms of indistinguishability from a human.

The Turing Test – Verdict So Far

245

As we saw before (slide 176), Turing himself
acknowledges that a machine might “think” in
ways very different from a human.

Moreover mimicking “subcognitive” human
responses is likely to be extremely difficult.
– Robert French (1990) suggests questions like:

“Rate ‘Flugly’ as the name of a glamorous
model or a cuddly toy.”

– But testing for indistinguishability of this sort – in
tastes and instinctive reactions – seems
inappropriate when testing for intelligence.

Rejecting Anthropocentrism

246

Perhaps a better form of test is one focused
on revelation of information processing – in a
teaching task – rather than deception.
– Enables focus on a specific domain, e.g. some

aspect of chemistry, which is suitably deep with
complex informational structures.

– No need to pretend, and no expectation of indist-
inguishability: the test is how well the system can
teach the theory (e.g as well as a human?).

– Could provide seriously useful products, and also
stimulate progress towards “intelligent” processing.

The Tutoring Test

241 242

243 244

245 246

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability
and Intelligence

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford

Lecture 8
Searle versus Turing:

Conclusion

248

Turing’s 50-year predictions in his 1950
paper look plausible (slides 228-30).

However as a criterion of intelligence, his
proposed Turing Test is very dubious:
– If interpreted generously (e.g. 70% success by

an average interrogator after 5 minutes), it is
undermined by the discovery that humans are
easy to fool by chatbots (slides 231-40).

– If interpreted more strictly, it is too demanding: an
intelligent system need not be designed to mimic
human cultural reactions etc. (slides 243-5).

Summary on Turing So Far

249

Searle’s Chinese Room thought-experiment
is wildly implausible in terms of practicality
(slides 216, 227).
– As with “Blockhead”, this casts some doubt on

our “intuitive” responses to it (cf. slides 207-10).

We have briefly noted two main objections,
the “System Reply” and the “Robot Reply”:
– Searle’s answer to the System Reply seems to

beg the question, as a matter of logic, but retains
some intuitive appeal (slide 222). We have yet to
consider his answer to the Robot Reply.

Summary on Searle So Far

250

Imagine a computerised tutoring system which
is capable of highly sophisticated information
processing in a complex domain (slide 246).
– It operates not by pretence, but rather by genuine

responsiveness to information structures, in ways
that reflect how human experts would think.

Nevertheless, Searle will insist that the
system’s processing is merely “syntactic”, with
no genuine “semantics”.
– It has no real understanding of the domain – its

“thought” cannot “reach out” to the real world.

An “Intelligent” Tutoring System?

251

Searle’s The Rediscovery of the Mind (1992,
pp. 78-9) emphasises this distinction:

– Intrinsic intentionality involves “a real, intentional,
mental state”, e.g. when I say “I am now thirsty”.

– As-if intentionality is metaphorical, for example if I
say “My lawn is thirsty”. The lawn has no
genuine intentional states, but I am talking of it
as-if-it-had-intentionality.

– “In French, ‘j’ai grand soif’ means ‘I am very
thirsty” illustrates derived intentionality: derived
from the intrinsic intentionality of language users.

Intrinsic/As-If/Derived Intentionality

252

First, we might accept that in our imagined
tutoring system the processed information has
no intrinsic, system-understood, semantics.
– But we might nevertheless consider the

processing of the information to be “intelligent”.

– Searle seems to assume that intelligence requires
intrinsic “semantics”, but this could be challenged.

Second, we can consider ways in which a
computer system might perhaps achieve
intrinsic “semantics” …

Two Responses to Searle

247 248

249 250

251 252

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

253

Searle’s objection seems quite strong in respect of
information processing about physical things (e.g.
chemicals or trees): “surely”, we are inclined to say,
“mere internal processing of formal symbols cannot
genuinely constitute thought about real trees!”

But this isn’t so clear with thought about abstract
entities such as numbers or chess positions, where
apparently “intelligent” processing need not be
responsive to the properties of concrete things like
trees, but only to appropriate logical relations, which
can apparently be represented formally.

Arithmetic and Abstract Games

254

Suppose we have a program
playing noughts-and-crosses
by calculating the best move
in every situation (analysing
all possible moves and recursively minimaxing).

Obviously the program isn’t aware, but its
processing is appropriately responsive to the
real logic of the game (e.g. how one position
changes to another, how positional assessments
are inherited through the game analysis tree).
Shouldn’t that be enough for “intelligence”?

A Simple Example

255

Let us here put purely abstract thinking, e.g.
about arithmetic and chess, to one side:

– It is extremely obscure how even we manage to
make reference to, and think, about abstract
entities (which neither appear to our senses, nor
seem to have any direct causal impact on us).

– Searle’s main point puts us with the animals and
against digital computers, and thought about
physical things is far more central to his case.

– So rather than philosophy of mathematics, let us
turn to something paradigmatically physical …

Avoiding Philosophy of Mathematics

256

Imagine a robotic crane, armed with appropri-
ate sensors and tools, which is programmed to
cut down trees “intelligently” and effectively.
– It senses for itself which trees are suitable for

chopping or pruning, and which are best left;

– It takes account of relevant conservation needs;

– It is responsive to physical obstructions and other
difficulties, and real-time events as it works.

This robot’s internal states are responsive to
physical things, and impact causally on them.

It’s a Lumberjack, and It’s OK?

257

Searle will still deny that the robotic crane’s
internal states have “semantic content”:

– His response to the Robot Reply suggests we
consider a “Chinese cabin” in the crane, fed with
messages from the sensors written in Chinese
characters, processed purely syntactically by the
man inside, and resulting in Chinese messages to
the crane’s motors – all of these messages being
incomprehensible to him.

– But this response is only conclusive if Searle’s
rebuttal to the System Reply works …

Searle’s Robot Response Again

258

Let us allow Searle that the man in the
Chinese cabin has no “semantic” grasp of
what is going on – no idea that he is
controlling a robotic lumberjack crane.

– As Copeland insists, this does not imply that the
system as a whole lacks “semantics” – that would
require another argument.

– And it is plausible that the information processing
of the crane system achieves “semantic content”
through its relationship to the sensors and motors:
the man’s unawareness of this is irrelevant.

Combining Robot and System Replies

253 254

255 256

257 258

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

259

Searle will no doubt deny that the robotic
lumberjack’s internal states have “semantic
content”, despite having these real-world
causal relations. But what then do they lack?

Searle’s Chinese-style arguments suggest he
thinks “understanding” in the sense of
conscious awareness is the crucial factor.

(But note in passing that “understanding” is a
very slippery word, that can itself be
understood in a variety of different ways!)

What Do Machines Lack?

260

Searle seems clear that some animals
have what digital computers lack:

“Visual and auditory experiences, tactile
sensations, hunger, thirst, and sexual desire, and
all caused by brain processes and they are
realised in the structure of the brain, and they are
all intentional phenomena. … it is just a plain fact
about biological evolution that it has produced
certain sorts of biological systems, namely
human and certain animal brains, that have
subjective features.”
Minds, Brains, and Science (1984), pp. 24-5, cf. 40-1

Do Animals Have What It Takes?

261

Elsewhere, Searle is more explicit on the
relation between intentionality and conscious-
ness, while also recognising (what might
otherwise seem a serious objection) that we
can have unconscious “intentional states”:

“Only a being that could have conscious
intentional states could have intentional states
at all, and every unconscious intentional state
is at least potentially conscious.”

Rediscovery of the Mind (1992), p. 132

A Nuance: Potentially Conscious

262

I suggest that Searle is at risk of conflating
two quite different things with his terms
“semantic”, “intentionality” etc.:

– One notion is roughly that of internal symbols’
having objective significance, of representing
external things in some intrinsic way (rather than
just being thought of by some other agent as
having such representative significance).

– The other is that of internal symbols’ having
subjective significance to the “agent” in question,
and hence requiring (potential) consciousness.

The Vagueness of “Semantic”

263

The simplest way of opposing Searle is to
draw a clear distinction between:
– Information processing and its characteristics.

– The extent to which that processing is conscious.

The former category could be divided further:

– Information processing which is embodied in such
a way as to have direct “quasi-semantic”
connections with the relevant subject-matter;

– Information processing which requires
interpretation by some external agent.

How to Oppose Searle

264

Distinguished in this way, information
processing can be:
– Conscious and embodied

Humans, animals

– Unconscious and embodied
The robotic lumberjack

– Unconscious and second-hand
Human use of “artificial intelligence” systems

Is there any good reason for restricting words
such as “intelligence” to the first of these?

Three Categories of “Intelligence”?

259 260

261 262

263 264

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

265

Recall Turing’s response to Jefferson at§6.4
(slides 189-94). There he seems to accept that
to support machine intelligence, he must take
machine consciousness to be as reasonable as
believing that other people are conscious:

“This argument [of Jefferson’s] appears to be a denial
of the validity of our test. According to the most
extreme form of this view ... the only way to know that
[either a machine or] a man thinks is to be that
particular man. It is in fact the solipsist point of view. It
may be the most logical view to hold but it makes
communication of ideas difficult. ... it is usual to have
the polite convention that everyone thinks.”

Reminder: Turing on Consciousness

266

Turing goes on to give his viva voce example
about the sonnet:

“What would ... Jefferson say if the sonnet-writing
machine was able to answer like this in the viva-
voce? ... if the answers were as satisfactory and
sustained as in the above passage ...”

But here – I suggested on slide 194 – Turing
should have continued:

“... then there would be reason to call the
machine ‘intelligent’ irrespective of whether or not
it has genuine feelings. Intelligent thinking need
not require consciousness (nor even – contra
Searle – potential consciousness).”

267

Most discussions of the Turing/Searle and
related debates apparently proceed on the
assumption that we should be seeking a verdict
(supporting one side or the other) based on our
current conceptual repertoire. But science does
not proceed like this, and nor – I suggest –
should philosophy, especially when our
philosophical conundrums are prompted by new
realities that challenge traditional boundaries.

(See also my paper, “The Philosophical Significance
of the Turing Machine and the Turing Test”, 2013)

Embracing Conceptual Change

268

Recall Turing’s prediction from §6 of the 1950 paper:

“The original question, ‘Can machines think?’ I believe to
be too meaningless to deserve discussion. Nevertheless
I believe that at the end of the century the use of words
and general educated opinion will have altered so much
that one will be able to speak of machines thinking
without expecting to be contradicted.”

Turing thus anticipated alterations in “the use of
words”, that is, evolution of our conceptual scheme.
And indeed his own discoveries, deriving from his
1936 paper, give excellent reason for favouring such
evolution, in the direction of separating “intelligence”
from consciousness.

Turing Predicts Conceptual Change

269

A problem with “intuition pumps” is that they can
tempt us into misleading or simplistic comparisons,
based on familiar “intuitive” assumptions and
drowning out unexpected differences.

Practical confrontation with new realities can be
far more vivid, and far more surprising, forcing us
to seriously revise our thinking by making it
impossible to ignore things that are unintuitive.

Major scientific progress has often involved such
major novelties, bringing “paradigm shifts” and
fundamentally new methods of explanation.

Real Novelty Beats Imagined Similarity

270

Luciano Floridi sees Turing’s as the fourth in a ser-
ies of conceptual revolutions concerning humanity’s
“fundamental nature and role in the universe”:

“We are not immobile, at the centre of the universe
(Copernicus); we are not unnaturally distinct and
different from the rest of the animal world (Darwin); and
we are far from being entirely transparent to ourselves
(Freud). We are now slowly accepting the idea that we
might be informational organisms among many agents
(Turing) …” (2008, p. 651)

My own view focuses not on the nature of humanity,
but on innovation in modes of explanation.

Floridi on Conceptual Revolutions

265 266

267 268

269 270

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

271

Modes of Explanation (until 1600)

Purposive Design (God)
– Things in the world (e.g. animals, plants,

minerals) take the form they do because they
were designed to be that way.

Purposive Action (Aristotle)
– Things in general (humans, stones,

water, fire, planets etc.) behave as
they do because they are striving to
achieve some desired state, or to
avoid some abhorrent situation. 272

The Scientific Revolution (1609-87)

Mechanism (Galileo, Descartes)
– Physical objects move through inertia

and mechanical contact. (Only human
behaviour is governed by reason.)

Mathematical Instrumentalism (Newton)
– The action of gravity is not intelligible

to us in the way that mechanism is,
but we can predict its effects
mathematically, in terms of forces
that generate acceleration.

273

The Naturalistic Turn (1739-1859)

Naturalist Psychology (Hume)
– Human behaviour is governed

more by emotions and imagination
than by reason: it is more “animal-
like” than “god-like”.

Evolution (Darwin, Wallace)
– Biological organisms take the form they do

owing to inheritance of characteristics and
competition for survival and reproduction.

274

Modern Physics (1905-30)

General Relativity (Einstein)
– Space and time are integrated, and matter

affects their structure, “curving” space in a
way that generates gravitational movement.

Quantum Mechanics (Bohr, Heisenberg)
– Phenomena are described in terms of

interacting “wave functions”, which enable
prediction but which cannot be understood as
implying determinate underlying “states”.

275

Breaking Paradigms

Advances like Galileo’s, Darwin’s, and Einstein’s
involve a fundamental change in our thinking:
– How we see our place in the universe (e.g. we are

not at the centre; we are continuous with the
animals rather than quite separate from them).

– Our understanding of the possibilities of scientific
explanation (e.g. through mathematical forces
rather than strivings; or by inherited variation and
selection rather than rational design; by curvature
in space-time rather than Newtonian forces).

So it’s not surprising that these great advances
were made by philosophically minded thinkers.

Darwin, Einstein, and Hume
Darwin read Hume’s Enquiries, Essays,
Natural History of Religion, History,
Dialogues, and biography. Indeed he
was reading and noting Hume on “the
reason of animals” when he came up
with his theory of evolution (1838-9).

Einstein said that “the critical reasoning
required … [to question] … the absolute
character of time … was decisively
furthered … by David Hume’s writings”.
“I studied [his] treatise on understanding
… with eagerness and admiration
shortly before finding relativity theory.”

276

271 272

273 274

275 276

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

277

The Weirdness of Physics

Both Relativity and Quantum Mechanics
illustrate how different the world can be from
our “intuitive” understanding of things.

Alan Turing’s invention of formal computation
led to more counter-intuitive discoveries:
– About the foundations of mathematics: there are

some mathematical questions for which there is
no possible method of solution.

– About the nature of “thinking” itself: we need to be
open to the possibility of inanimate thought.

278

Turing’s Discovery (1936)

Information processing can be
understood in terms of symbolic
inputs and outputs, governed by
explicit and automatic processes
with a limited range of operations
(as defined by a “Turing machine”).

Hence information does not
presuppose an “understanding” mind.
– So since Turing, we are confronted with sophisticated

information processing without conscious purpose,
just as Darwin brought us sophisticated adaptation
without intentional design.

279

Words like “intelligent” acquired their meaning
within a world which doesn’t include the problem
cases on which we are focusing. We are used to:

– Agents who apply their intelligence to the situation they
understand themselves to be in, performing
sophisticated processing of information in order to adapt
their behaviour to achieve their own purposes.

– Inanimate objects with no purposes of their own, no
understanding, no sophisticated information processing.

So what to do when we encounter an inanimate
object that “intelligently” processes information?

Naïve Views about Intelligence

280

Many of our concepts are open-textured
(Waismann’s term): it is not clear in advance
how we would apply them to all possible cases.

This is particularly important in legal contexts:
– Suppose marriage is understood as being between

a man and a woman only, in a society that never
contemplates sex changes. How should relevant
laws apply when sex changes occur?

– Should inheritance rights apply to adopted children?

– Suppose Theseus’s ship has mooring rights in perp-
etuity … which ship has them? (Copeland, pp. 52-3)

Open-Texture

281

“Station Master says, Mum, as Cats is ‘Dogs’, and
Rabbits is ‘Dogs’, and so’s Parrots; but this ’ere
Tortis’ is a Insect, so there ain’t no charge for it!”

Punch, 6 March 1869, p. 96 282

Open texture cuts in two directions:
– We cannot expect our concepts to be prepared in

advance for all new eventualities: they may have to
be revised or “tuned” to new contexts (especially
when major paradigms are breached).

– We needn’t accept any requirement, when retuning
concepts, to make them immune to future revision:
we don’t have to take all future possibilities – let
alone all logical possibilities – into account.

So when revising our concepts, we have every
right to ignore crazy thought-experiments!

Open-Texture and Plausibility

277 278

279 280

281 282

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

283

Consider the way in which we think about
intelligence in ordinary life …
– Typically subject-relative;

– A matter of degree, not all-or-nothing;

– Measured by performance, including flexibility,
speed, and appropriateness of response to
new requirements or new information;

– Not significantly correlated with “feeling” or
“consciousness”: we don’t judge someone as
more intelligent because they care more.

How Do We Judge Intelligence? Information Processing & Phenomenology

Suppose now we distinguish sophistication of
information processing from phenomenology.

These can often come apart:

– Dogs can desire as strongly as we do (but that
doesn’t make us judge them as intelligent);

– Experts are often less “conscious” than novices;

– Our intuitive judgements of what is “easy” are
often badly wrong (compare arithmetic with
running and catching a ball).

Can Machines be Intelligent?

If we do distinguish sophistication of information
processing from phenomenology, then it’s clear
that intelligence is far more a measure of the
former than the latter.

In our new world of unconscious – but highly
sophisticated – information processors, it makes
sense to allow our concept of “intelligence” to
evolve accordingly.

So Turing’s main claim in his 1950 paper is
substantially vindicated (even though the Test he
proposed to support it is extremely dubious)!

286

As we saw, Turing himself fails to distinguish
information processing from phenomenology, and
resorts to a comparison with solipsism.
– But denying “phenomenal consciousness” to a computer

or robot, no matter how sophisticated its behaviour may
be, is not on the same level as denying it to another
human being …

– We know (at least in outline) the explanation for the
robot’s behaviour, and it involves following a program
etc.; nothing to do with consciousness.

– We have excellent reason, however, to think that other
humans function biologically in broadly the same way as
we do, with consciousness playing an important causal
role, even if we can’t understand how it operates!

Turing’s Solipsistic Mistake

287

The phenomenal reality of consciousness
strongly suggests that it is something causally
active, not just an abstraction of information
processing patterns or functional role.
– Its evolutionary role, however, seems mysterious:

“zombies” lacking consciousness but behaving
exactly like us would be just as successful.

– Nevertheless the close correlation between
consciousness (e.g. of pleasures and pains) and
factors affecting our wellbeing is overwhelming
evidence that consciousness is indeed causally
active, not just an “epiphenomenon”.

Consciousness and its Role

288

Consciousness could only evolve in a way that is
so well-tuned to our needs if it is indeed causally
active, even if we are unable to work out how.
– Evolutionary theory is well understood and supported

by overwhelming empirical evidence. Strong scientific
evidence trumps armchair speculation!

We humans are all products of the same evolved
biological processes. So even if we cannot work
out how consciousness arises, we have very
good reason to attribute it to each other.
– But there is no such reason to attribute it to computers.

Dismissing Human Solipsism

283 284

285 286

287 288

Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

289

Playing infallibly requires a reliable method for
assessing the “value” of any position (+1=winning;
0=drawing; -1=losing).

Here it’s Red’s turn to move:
– It’s a “6-space-position” (let’s

say “6-position” for short).

– After Red makes her move, Blue
will be faced with a 5-position in
which to make his reply.

– Suppose there is a method for
calculating the value (to Blue) of any 5-position: how
can Red use this now to work out her best move?

Appendix: Noughts-And-Crosses

290

If RED moves
here, BLUE
should lose

(position has
Blue value -1)

If RED moves
here, BLUE
should lose

(position has
Blue value -1)

If RED moves
here, BLUE
should win

(position has
Blue value +1)

If RED moves
here, BLUE
should win

(position has
Blue value +1)

If RED moves
here, BLUE
should draw
(position has
Blue value 0)

If RED moves
here, BLUE
should draw
(position has
Blue value 0)

Best moves
for Red, since
these yield the
5-positions that
have the lowest
value for Blue

291

Red winning = Blue losing (and vice-versa).
– So the value of a position to Red is the inverse of its

value to Blue (e.g. -1 as opposed to +1).

– Hence Red tries to find moves which maximise the
value to her, and minimise the value to Blue.

– Red, faced with a 6-position, chooses the move
which produces the 5-position which is worst (or
equal-worst) for Blue.

OK, but how does she work that out?
– Answer: by going on to search through the relevant

5-positions (viewed from Blue’s point of view) …

“Minimaxing”

292

Consider the Red move bottom
centre. Now it would be Blue’s
turn to move:
– It’s a 5-position.

– After Blue makes his move, Red
will be faced with a 4-position in
which to make her reply.

– Suppose there is a method for calculating the value (to
Red) of any 4-position: how can Blue use this
information to work out his best move in this position?

– Answer: search through the 4-positions, and choose
the one which is worst from Red’s point of view.

Similar problem, a move later …

293

We have seen how to evaluate a 6-position if
we can evaluate a 5-position,
– … and in the same way we can evaluate a 5-

position if we can evaluate a 4-position,

– … and a 4-position if we can evaluate a 3-position,
and a 3-position if we can evaluate a 2-position,
and a 2-position if we can evaluate a 1-position,
and a 1-position if we can evaluate a 0-position!

The only other thing we need is to be able to
recognise a FINAL position as winning for
Red, winning for Blue, or drawn.

The Magic of Recursion

294

So to evaluate a position with X to move:
– Has X already lost (because the opponent has a

line of three)? If so, its X-value is -1.

– Is the position full up (with all nine spaces filled)?
If so, its X-value is 0.

– If neither of these, then construct in turn all of the
positions (with Y to move) that can arise from the
current position (i.e. try out in turn all of X’s
possible moves in the current position) …

Evaluate each of these new positions from Y’s point
of view (resulting in evaluations Y1, Y2, and Y3, say),
and then assign – as X-value of the current position
– the inverse of the lowest of Y1, Y2, and Y3.

Choose the move with the best X-evaluation.

289 290

291 292

293 294

