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Role of the Course

This course is part of the “Introduction to 
Philosophy” for Prelims in Computer 
Science and Philosophy.
– The 3-hour examination will contain six 

“either … or” questions on “General 
Philosophy” and six questions on Turing.

– Students must answer four questions, 
including at least one from each half of the 
paper (so between one and three on Turing).
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Overall Plan of the Lectures

Lecture 1: Types of number, Cantor, infinities,
diagonal arguments

Lecture 2: Hilbert’s Programme, Gödel’s Theorem

Lectures 3-5: The 1936 paper, “On Computable
Numbers, with an Application to the
Entscheidungsproblem”, which
introduced the Turing Machine.

Lectures 6-8: The 1950 paper, “Computing
Machinery and Intelligence”, which
introduced the Turing Test.
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Supporting Textbook

Charles Petzold, The 
Annotated Turing, contains 
“everything you need to know” 
on the background and the 
classic 1936 paper.

It reproduces the original 
paper, together with extensive 
explanation and discussion.

With its help, you should aim 
to read and understand 
Turing’s entire paper.
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Highly Recommended Reading
– Andrew Hodges, Alan Turing: The Enigma of 

Intelligence (Hutchinson, 1983, 586 pp.)
An excellent biography by a Fellow of Wadham.

– Andrew Hodges, Turing: A Natural Philosopher
(Phoenix, 1997, 58 pp.)

Well worth reading for a quick overview and insights into 
Turing’s life and thought.

– S. Barry Cooper and Jan van Leeuwen (eds), Alan 
Turing: His Work and Impact (Elsevier, 2013, 914 pp.)

Very rich collection of Turing’s work with commentary from 
philosophers, mathematicians, computer scientists etc.

– Ernest Nagel and James R. Newman, Gödel’s Proof
(RKP, 1959 & 1971, 118 pages)

Lucid and approachable presentation of Gödel’s theorem.
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Alan Turing

Turing was born in London on June 23, 1912, 
and educated at Hazelhurst and Sherborne 
Schools (while his parents lived in India, his 
father working in the Indian Civil Service).

He was shy, but formed a close relationship with 
Christopher Morcom.  In 1929, both applied to 
read Mathematics at Trinity College, Cambridge: 
Morcom was accepted, but Turing was not.

Morcom seems to have been Turing’s first love; 
he tragically died of tuberculosis (in February 
1930), with profound effects on Turing.
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(Later in his life, despite his heroic – but largely 
unknown – decryption of Nazi Enigma codes 
during the War, Turing was prosecuted for homo-
sexuality, subsequently killing himself in 1954.)

Turing reapplied to Cambridge in 1930, and was 
accepted for King’s College, going up in 1931.

In May/June 1934, Turing took his Part II Tripos
examinations, passing with Distinction and 
winning a King’s College research studentship.  In 
1935, he was elected to a 3-year fellowship.

In Spring 1935, Turing attended a Part III course 
by Max Newman, on the Foundations of 
Mathematics, largely inspired by David Hilbert …
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David Hilbert (1862-1943)

Hilbert (born Königsberg) was perhaps
the most influential mathematician
of the early 20th century.

He developed the formalist approach
to the philosophy of mathematics,
which sees mathematics as involving
manipulation of symbols according to an agreed set 
of formal rules, and starting from given axioms.

At the 1900 Paris International Congress of 
Mathematicians, Hilbert famously listed the most 
prominent unsolved problems of mathematics.
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Hilbert’s Tenth Problem

Hilbert’s list later grew to 23, including:
10.  Determination of the Solvability of a

Diophantine Equation
Given a diophantine equation with any number of 
unknown quantities and with rational integral 
numerical coefficients:  To devise a process 
according to which it can be determined by a finite 
number of operations whether the equation is 
solvable in rational integers.

* For lucid discussion of this problem and the history of 
its (dis-) solution, see Petzold, chapters 1 and 18.
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Diophantine Equations

These are named after problems discussed by the 
3rd century Alexandrian mathematician Diophantus, 
often called “the father of algebra” though some of 
his methods were actually Babylonian.

Diophantine equations are polynomial equations 
(which may have many, or no solutions) whose 
solutions must be integers.  The most famous are 
associated with Fermat’s “Last Theorem”:

𝑥 + 𝑦 = 𝑧

Fermat claimed to have a proof that there are no 
integer solutions if n>2.  This “theorem” was finally 
proved by Andrew Wiles (Merton College) in 1995.
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Some of Hilbert’s Other Problems

1.  The continuum hypothesis:  =  2  ?

This asks whether the second transfinite number is 
the cardinality of the continuum – see Petzold p. 32.  
It has since been shown to be neither provable nor 
disprovable within standard set theory.

2.  Prove the consistency of arithmetic axioms;
See Petzold p. 46, and discussion below.

8. Riemann hypothesis and other problems 
including Goldbach’s Conjecture;

Goldbach is mentioned by Petzold on p. 47.

Hilbert’s Formalist Challenges

In 1921 Hilbert set out his famous “programme” in 
the foundations of mathematics, later extended:

– 1921:  To establish mathematics on a solid and 
provably consistent foundation of axioms, from which, 
in principle, all mathematical truths can be deduced (by 
the standard rules of first order predicate logic).

– 1928: the Entscheidungsproblem or “decision problem”: 
can an effective procedure be devised which would 
demonstrate – in a finite time – whether any given 
mathematical proposition is, or is not, provable from a 
given set of axioms? 

12
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Turing’s 1936 Paper:

“On Computable Numbers, with an 
Application to the Entscheidungsproblem”

Turing’s classic paper, which introduced the 
Turing Machine, is the main focus of these 
lectures.  It settled Hilbert’s decision problem 
(by showing that it cannot be solved).

But the paper starts from the concept of a 
“computable number”, and in order to put this 
in context, we must first understand several 
other types of number …

14

Various Types of Number

All of the following sets of numbers are 
standardly used in mathematics:

– Natural numbers 1, 2, 3, 4, … (set ℕ), which is a 
subset of the set of integers (set ℤ);

– Rational numbers, fractions of integers (set ℚ);
– Real numbers (set ℝ), which include also:

Irrational numbers, which are not rational;
Algebraic numbers, roots of algebraic equations;
Transcendental numbers, which are not algebraic;

– Complex numbers (set ℂ) need not concern us.
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Various Types of Infinity

Georg Cantor (1845-1918)
developed set theory and
the theory of transfinite
cardinal numbers.

His work implies that we
must recognise more than
one “infinite number”.

The key to understanding such numbers is 
widely known as “Hume’s Principle” …
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Frege cites “Hume’s Principle”

“… When we have … acquired a means of arriving 
at a determinate number and of recognizing it again 
as the same, we can assign it a number word as its 
proper name.

§63.  HUME long ago mentioned such a means: 
‘When two numbers are so combined as that the 
one has always an unit answering to every unit of 
the other, we pronounce them equal.’  …”

Frege, Foundations of Arithmetic
(1884, translated by J. L. Austin 1950),

referring to Hume’s Treatise 1.3.1.5
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One-to-one Correspondence

Making Hume’s principle a bit more precise, 
we shall say that two sets have the same 
cardinality if, and only if, a bijective function (or 
bijection, or one-to-one correspondence) can 
be defined between them.

Such a function is both one-to-one (or injective: 
distinct elements of the domain are never 
mapped to the same element of the codomain) 
and onto (or surjective: the range/image of the 
function is the entire codomain).

18

An Injective Function – no two arrows “hit” the same target

A Surjective Function – every element of the codomain is “hit” 
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Making Do With Surjectivity

When dealing with infinite sets, rather than 
attempting to define a bijection, we often 
make do with the principle that if we can 
define a surjective function:

F :  A  B

then A must be “at least as big” as B; or in 
terms of cardinalities, |A|  |B|.  (Intuitively, A 
must provide enough “arrows” to hit all of B.)

Surjections in both directions would imply

(|A|  |B|)  (|B|  |A|)   |A| = |B|
20

Enumerability / Countability

If a surjection can be defined from the set of 
natural numbers ℕ to set A, then we say that 
A is countable or enumerable (i.e. they can in 
principle be enumerated, or put in a list).

Here, following Petzold (and tradition), we 
take the natural numbers to start from 1 
(rather than from 0, as many authors do).

Georg Cantor proved that the set of rational 
numbers ℚ and the set of algebraic numbers 
are both enumerable.

21

Rational Numbers

A rational number is a number that can be 
expressed as a fraction of integers.

Expressed as a decimal, a number is 
rational if and only if that decimal eventually 
recurs (i.e. repeats infinitely), e.g. 3.000… 
or 7.5000… or 0.666… or 0.367367367…

To convert to a fraction, sum the series:

0.367367367 … = + + + ⋯

= × [using the formula “𝑎 (1 − 𝑟)⁄ ”]
22

Rational Numbers are Enumerable
Set out the fractions of positive integers in a 
grid, and define a surjection F : ℕℚ following 
the line: F (1) = ⁄ , F (2) = ⁄ , F (3) = ⁄ , etc.

⁄    ⁄    ⁄    ⁄ ⁄ ⁄ ⁄ ⁄ …

⁄    ⁄    ⁄   ⁄ ⁄ ⁄ ⁄ ⁄ …
⁄    ⁄    ⁄    ⁄ ⁄ ⁄ ⁄ ⁄ …
⁄    ⁄    ⁄    ⁄ ⁄ ⁄ ⁄ ⁄ …

⁄    ⁄    ⁄    ⁄ ⁄ ⁄ ⁄ ⁄ …

⁄    ⁄    ⁄    ⁄ ⁄ ⁄ ⁄ ⁄ …
…

23

We thus list all of the fractions in the array, 
starting ⁄  , ⁄  , ⁄  , ⁄ , ⁄ , ⁄ , ⁄ …

So our surjection maps 1 to the 1st of these, 
2 to the 2nd, 3 to the 3rd, and so on.

Curiously, every fraction (including all the 
natural numbers ⁄  , ⁄  etc.) will appear 
in this list an infinite number of times, e.g. 
⁄ will appear again as ⁄ , ⁄ , ⁄ etc.

If we want to include negative fractions, we 
can alternate: ⁄ , ⁄ , ⁄ , ⁄ , ⁄ etc. 
(and we could start with 0 if desired).

24

2 is Not Rational

Suppose that 2 = , where m and n are 

integers with no common factors.

Squaring, 2 = , so 2𝑛 = 𝑚 , and 𝑚 is even.

But any odd number (e.g. 2k+1) has an odd square 
(4𝑘 +4k+1), so m cannot be odd, i.e. m is even.

Therefore m = 2k, for some integer k.

Hence 2𝑛 = 𝑚 = 4𝑘 , and 𝑛 is even.

So n is even too, meaning that m and n have 
the factor 2 in common … CONTRADICTION!!

19 20
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Algebraic Numbers
An algebraic number is any number that 
can be a solution (or “root”) of an equation 
in one variable with integer coefficients 
(these are called algebraic equations).

Any rational number is straightforwardly 
algebraic, since ⁄ (𝑎 & b integers) is the 
solution to the equation bx = 𝑎.

Any square root or n th root of a rational 
number is algebraic, being a solution to 
some equation of the form b𝑥 = 𝑎.

26

Algebraic Numbers are Enumerable

We define, for any algebraic equation
𝑎 𝑥 + 𝑎 𝑥 + … + 𝑎 𝑥 + 𝑎 = 0

the rank (or height) of the equation as:
𝑛 + |𝑎 | + |𝑎 | + … + |𝑎 | + |𝑎 |

Since all the coefficients and powers are 
integers, clearly there are a finite number 
of algebraic equations of any given rank 𝑟.

These can be ordered, e.g. first by 𝑛, then 
by 𝑎 , then by 𝑎 , …, finally by 𝑎 .

27

So now we can put all possible algebraic 
equations in order, starting like this:

Rank 2:

−𝑥 + 0 = 0,    𝑥 + 0 = 0

Rank 3:
−2𝑥 + 0 = 0,    −𝑥 − 1 = 0,    −𝑥 + 1 = 0,

𝑥 − 1 = 0,    𝑥 + 1 = 0,    2𝑥 + 0 = 0,

−𝑥 + 0 = 0,    𝑥 + 0 = 0

Rank 4:
−3𝑥 + 0 = 0, −2𝑥 − 1 = 0, −2𝑥 + 1 = 0,

… 28

Each algebraic equation has at most 𝑛 solutions 
(where 𝑛 is the highest power of 𝑥 in the equation); 
and we can arrange these in numerical order.*

So now we can make a list that will include all the 
algebraic numbers, ordered first by the equation to 
which they are a solution (as explained earlier), 
and then by the value of the solution.

As before, we can define a surjection from ℕ 
which maps 1 to the 1st in the list, 2 to the 2nd, 3 to 
the 3rd, and so on.  QED!  (The Latin “quod erat
demonstrandum” means “what was to be proved”.)

* If complex numbers were to be included, we could order 
the solutions first by real part, then by imaginary part.

29

Transcendental Numbers

A transcendental number is a number 
which is not algebraic – so it is not a 
solution to any algebraic equation.

𝜋 and 𝑒 are both transcendental, as are 
sin (𝛼), cos (𝛼), and tan (𝛼), for any non-
zero algebraic value of 𝛼.*

Likewise ln (𝑎) and 𝑎 if 𝑎 is algebraic (and 
not 0 or 1), and 𝑏 is irrational algebraic.

* Note that 𝛼 represents an angle in radians, not degrees.
30

Real Numbers are Not Enumerable

Suppose that the set of real numbers ℝ is 
enumerable.  Then all 𝑥 ∈ ℝ (where
0 < 𝑥 < 1) can be put into an infinite list:

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

𝑎 : 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …

… …

25 26
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Diagonalisation

Consider now the number c (for Cantor) that 
we get if we take the digits in order down the 
long diagonal of this list, adjusting them so that 
always 𝑐 ≠ 𝑎 , e.g. using this simple rule:

If 𝑎 =5, then 𝑐 =0, otherwise 𝑐 =5.

Clearly the number c will differ from the n th

number in the list at the n th decimal place, for 
all n.  Hence c is a real number between 0 
and 1 that does not occur in the list of all such 
numbers … CONTRADICTION!!

32

Cantor’s “diagonal” argument was the first example 
of a clever type of argument that works by taking 
two dimensions of variation and then providing 
some construction that runs “down the diagonal”.

Another famous example is the proof of Cantor’s 
Theorem that for any set A, the power set ℘(A) or 
2 , i.e. the set of all subsets of A, always has a 
greater cardinality than A itself.

– This is obvious for finite sets (where a set of n
objects has 2 possible subsets), but Cantor 
proved that it is true for all sets, deriving a 
contradiction from the assumption of a surjective 
function from any set to its power set.

33

Suppose F is a surjection from A to ℘(A), where A is 
any enumerable set, then we list A’s elements horiz-
ontally, and their corresponding subsets vertically, 
with ticks or crosses showing set membership:

A[1] A[2] A[3] A[4] …

F (A[1])     …

F (A[2])     …

F (A[3])     …

F (A[4])      …

Now consider the set of elements that have crosses 
down the long diagonal.  Where is this set in the list?  
It should have a cross where there is a tick on the 
long diagonal, and a tick where there is a cross.  So it 
differs in the n th place from the n th set in the list. 34

An Infinity of Infinities
The proof of Cantor’s Theorem does not rely on 
enumerability of the domain of F , and can work 
without the explicit diagonalisation, if we simply 
consider the set:

S = { 𝑥∈𝐴: 𝑥∉F (𝑥)}

S cannot be in the range of F , because
if S=F (𝑥) for any 𝑥, then 𝑥∈S  𝑥∉S.

This implies that the power set of any infinite set 
must have a cardinality strictly greater than that 

set – we cannot stop at 2 (which is the 
cardinality of the continuum – Petzold pp. 31-2).

35

Russell’s Paradox

By contemplating Cantor’s argument, Russell came to 
his famous paradox of

The set of all sets that are not members
of themselves

This is similar to the “paradox” of the village barber 
who shaves all and only those men who do not shave 
themselves.  But whereas the latter can easily be 
avoided (by denying that there is such a barber, or that 
the barber is a man), Russell’s paradox demonstrates 
a contradiction in the heart of the logical theories that 
he and Frege had been attempting to develop.

36

Russell to Frege, 16 June 1902:
“Let w be the predicate of being a predicate which 
cannot be predicated of itself.  Can w be predicated 
of itself?  From either answer follows its 
contradictory.  …   Likewise, there is no class (as a 
whole) of those classes which, as wholes, are not 
members of themselves.  From this I conclude that 
under certain circumstances a definable set does 
not form a whole.”

Frege to Russell, 22 June 1902:
“Your discovery of the contradiction has surprised 
me beyond words and, I should almost like to say, 
left me thunderstruck, because it has rocked the 
ground on which I meant to build arithmetic.”

31 32
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Hilbert’s Programme
(from lecture 1, slide 12)

Recall Hilbert’s ambitions:

– 1921:  To establish mathematics on a solid
and provably consistent foundation of axioms, from 
which, in principle, all mathematical truths can be 
deduced (by the standard rules of first order predicate 
logic – this will usually be assumed in what follows).

– 1928: the Entscheidungsproblem or “decision 
problem”: can an effective procedure be devised which 
would demonstrate – in a finite time – whether any 
given mathematical proposition is, or is not, provable 
from a given set of axioms? 

38

Consistency, Completeness,
and Decidability

Consistency
– The set of axioms should be provably consistent.

Completeness:

– All mathematical truths should (in principle) be 
deducible from those axioms.

Decidability:

– There should be a clearly formulated procedure which 
is such that, given any statement of mathematics, it 
can definitively establish within a finite time whether 
or not that statement follows from the given axioms. 

39 40

Syntactic Formalism

In formal treatments, these notions are standardly 
interpreted syntactically (i.e. in terms of structural 
relationships between formulae) rather than 
semantically (i.e. in terms of truth and meaning).

Thus understood,

– a consistent system is one in which it is never 
possible to prove both a proposition P and its 
negation P;

– a complete system is one in which it is always 
possible either to prove P or to prove P, for any 
proposition P that is expressible within the system.

41

Consistency and Completeness

Thus consistency (cannot prove both P and P) 
and completeness (can prove either P or P) are 
closely related, and can be understood quite 
independently of whether or not the axioms are 
true and the rules valid (i.e. truth-preserving).

If, however, we were able to achieve a consistent 
and complete system of arithmetic, with true
axioms and valid rules, then any arithmetical 
proposition would be provable if, and only if, it is 
true.  A major part of Hilbert's dream would thus 
be realised.

Gödel’s Theorem (1931)

Gödel’s First Incompleteness Theorem:
In any true (and hence consistent) axiomatic
theory sufficiently rich to enable the expression and 
proof of basic arithmetic propositions …
– It will be possible to construct an arithmetical 

proposition G such that neither G, nor its negation, is 
provable from the given axioms.

– Therefore the system must be incomplete.

Moreover it follows from Gödel’s reasoning – on the 
assumption that the system is indeed true (and hence 
consistent) – that G must, in fact, be a true statement 
of arithmetic.  Can we then know unprovable truths?

42
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1. Devise a systematic method for assigning a “Gödel 
number” g[F] to every formula F – and every sequence of 
formulae – that are expressible within the theory.

2. Express logical relationships (e.g. “sequence S is a proof 
of formula F”) in terms of mathematical relationships 
between the Gödel numbers of S and F: the mathematical 
formula expressing that relationship, Proof(g[S], g[F]) for 
short, will be true if, and only if, S is a valid proof of F.

3. Devise a mathematical formula G which, according to this 
method, is true if, and only if, there is no sequence S which 
yields a valid proof of G itself.  This formula will be of the 
form “x Proof(x, g[G])”, i.e. “There is no x such that x is 
the Gödel number of a sequence that proves G” …

The Proof Strategy

44

Gödel Numbering

Gödel’s proof (for which I mainly follow Nagel and 
Newman’s presentation) encodes statements 
about mathematical relationships (e.g. that some 
sequence of formulae provides a valid proof of 
some formula F) as formulae within arithmetic.
– This involves assigning a Gödel number, g[f] for short, 

to each formula f, according to its structure:
Constant symbols have g numbers 1 (“”), 2 (“”), 3 (“”), 4 (“”), 
5 (“=”), 6 (“0”), 7 (“s”), 8 (“(”), 9 (“)”), and 10 (“,”).

Numerical variables have g numbers 11 (“x”), 13 (“y”), 17, 19, …

Sentential variables have g numbers 11 (“p”), 13 (“q”), 17 , …

Predicate variables have g numbers 11 (“P”), 13 (“Q”), 17 , …

(11, 13, 17, 19, … is following the sequence of prime numbers >10)

45

Having Gödel numbers for the individual symbols, a 
number can now be worked out for each formula by 
raising successive prime numbers to those powers:

 x (       x =      s       y )

4   11    8     11      5      7     13       9

24  311  58  711  115  137  1713  199

Then a Gödel number for a sequence of formulae
can be derived similarly, by raising 2 to the power 
of the first formula, 3 to the power of the second, 
and so on, then multiplying these all together.  
Obviously, the numbers are astronomical!

* Note that “s” is the sign for “successor”, e.g. 1=s0.
46

Note that each formula (or sequence of formulae) 
has a unique Gödel number – no two formulae (or 
sequences) can have the same Gödel number.

Moreover it is straightforward “in principle” to decode 
a Gödel number, by factorising it into its prime 
factors, examining the powers of those factors, etc.

This makes it feasible to use Gödel numbers as 
proxies for those formulae in expressing their 
properties and the relations between them (e.g. the 
function we shall call sub that holds when one 
formula is a substitution instance of another).

Decoding Gödel Numbers

47

Substituting Numerals for Variables

We earlier saw how to derive the Gödel number 
of the formula:

x (x = sy)

24  311  58  711  115  137  1713  199

Here y is a free variable, and we can imagine 
substituting a particular numeral (say “ss0”, rep-
resenting 2) for y within the formula, yielding:

x (x = sss0)

The Gödel number of this formula is:
2431158711115137177197236299

48

So here we have taken formula number:

24311587111151371713199

“x (x = sy)”

and within it we have substituted the variable 
with number:

13 “y”

by the numerical expression for the number:

2 “ss0”

This substitution has yielded formula number:

2431158711115137177197236299

“x (x = sss0)”

43 44
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There will be a particular arithmetical function 
relating these four numbers.  We can write:

2431158711115137177197236299

= sub(24311587111151371713199, 13, 2)

So sub is an arithmetical function with 3 inputs:
– the Gödel number of a formula containing a variable;

– the Gödel number of that variable (e.g. 13 for “y”);

– a number (e.g. 2) whose numeral (e.g. “ss0”) is to 
be substituted for that variable

Given these inputs, sub yields:
– the Gödel number of the formula resulting from sub-

stitution of the variable with the numeral.
50

sub is arithmetically a complicated function, but it is 
well-defined and could be spelled out in detail.

If 𝐹 is a formula containing y (Gödel number 13) 
and 𝐹 is the corresponding formula in which y is 
substituted by the numeral for n, then we have:

g[𝐹 ] = sub(g[𝐹 ], 13, n) 

Imagine now that the function sub(a, b, c) is spelled 
out in gory arithmetical detail, and that we write out 
this expression with y in place of a and c, and 13 in 
place of b.  This yields a complicated (but provably 
possible) arithmetical expression for:

sub(y, 13, y)

which will soon play a key role.

51

Arithmetising Meta-Mathematics

sub is a relatively simple function.  But Gödel also 
showed that it is possible to define a (far more 
complicated) arithmetical formula A corresponding to 
the meta-mathematical statement that a sequence of 
formulae S constitutes a proof of formula F.  A will be 
(arithmetically) true if and only if S indeed proves F.

Let us use “Proof(a, b)” as shorthand for the 
arithmetical formula corresponding to:

“The sequence of formulae with Gödel number a is a 
proof (or demonstration)* of the formula with Gödel 
number b.”

* Nagel and Newman use “Dem” instead of “Proof”
52

A Truth-Preserving Correspondence

The crucial point here is that the arithmetical formula 
Proof(a, b) will be true if, and only if, the meta-
mathematical statement “The sequence of formulae with 
Gödel number a is a proof of the formula with Gödel 
number b” is also true.    [Note that Proof(a, b) expresses a 
statement – e.g. of an arithmetical equation – rather than a 
mere numerical expression like sub(a, b, c)]

So to establish whether or not the sequence of formulae 
with Gödel number a is in fact a valid proof of the formula 
with Gödel number c, it suffices to establish whether or 
not the numbers a and c yield a true equation when 
substituted to give the arithmetical formula Proof(a, c).

53

The Heart of Gödel’s Argument

Consider now the arithmetical formula:

 Proof(a, b)

This corresponds to the statement that the 
sequence of formulae with Gödel number a is not a 
proof of the formula with Gödel number b.

Likewise this arithmetical formula: *

 x Proof( x, sub(y, 13, y) )

Corresponds to the statement that there is no proof 
of the formula with Gödel number sub(y, 13, y).

* Nagel & Newman use “(x) ” instead of “ x”
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 x Proof( x, sub(y, 13, y) )

This arithmetical formula corresponds to the 
meta-mathematical statement that

– … there exists no sequence of formulae that 
constitutes a proof of the formula with Gödel 
number sub(y, 13, y).

– … or in other words, that formula (whose precise 
identity will obviously depend on the value 
substituted for “y”) is not provable.

Now consider the arithmetical formula above, 
and suppose it has the Gödel number n.
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Gödel’s Magical Move

We have that:

g[  x Proof( x, sub(y, 13, y) ) ] = n
Now consider the formula:

(G)  x Proof( x, sub(n, 13, n) )

and notice that this is itself the formula that we 
obtain from the formula with Gödel number n if 
we substitute y by the numeral for n.  Hence:

g[  x Proof( x, sub(n, 13, n) ) ] = sub(n, 13, n) 
56

(G)   x Proof( x, sub(n, 13, n) )

This arithmetical formula corresponds to the 
meta-mathematical statement that
– …there exists no sequence of formulae that 

constitutes a proof of the formula with Gödel 
number sub(n, 13, n).

– … or in other words, that formula is not provable.

But this arithmetical formula itself has the 
Gödel number sub(n, 13, n)!

So G corresponds to the meta-mathematical 
statement that G itself is unprovable!!

57

The Denouement

The arithmetical proposition G encodes the 
statement that G itself is unprovable (within the 
formal system chosen).

So if G were false, then it would follow (from this 
encoding) that G was not unprovable:

― Hence G would have to be provable in the system.

― And if G were provable within a correct axiomatic 
system of arithmetic, then G would have to be true.

Hence if G were false, we would have a contradict-
ion.  So G must be true and, given what it encodes, 
must also be unprovable within the formal system.

58

To spell this out further, the encoding means that:

G is true  G is unprovable

  G  G is provable

But if G is provable and the system provides a 
faithful and consistent representation of arithmetic, 
then G must be true, so we have:

 G  G is provable  G
So G cannot be false, and hence must be true.  Yet if 
it is true, it is unprovable (because it encodes the 
statement that it is unprovable). So our system, if it is 
a consistent and correct axiomatisation of arithmetic, 
cannot be complete, for G will then be a true
statement of arithmetic that cannot be proven.

The Entscheidungsproblem Remains

Gödel left the Entscheidungsproblem as 
unfinished business:

– He had shown that any consistent axiomatic 
system of arithmetic would leave some 
arithmetical truths unprovable
(i.e. such a system could not be complete).

– But there might still be some effectively 
computable decision procedure which would 
infallibly, in a finite time, reveal whether any given 
proposition P is, or is not, provable. 

59

What is “effective computability”?

An “effectively computable” procedure is 
supposed to be one that:
– can be performed by systematic application of 

clearly specified rules,

– without requiring any inspirational leaps or 
spontaneous intellectual insights.

So to find the limits of “effective computability”,
– we need to devise a way of encompassing all 

possible mechanical methods of inference …

– … and this is how Alan Turing came to invent 
what is now known as the Turing machine.
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The key contribution of Alan Turing’s 1936 paper

“On Computable Numbers, with an
application to the Entscheidungsproblem”

(Proceedings of the London Mathematical
Society, 2nd series, Vol. 42, pp. 230-65)

is to provide a characterisation of “effective 
computability” in terms of the behaviour of an 
extremely simple type of machine which, he argues, 
can execute (either directly or indirectly) all possible 
methods of “mechanical” information processing.  
This is now universally known as the Turing Machine.

Effective Computability

63

An Outline of the 1936 Paper

“On Computable Numbers …”
– Turing defines the concept of a “computable 

number”, focusing on binary fractions or what 
we might call “binimals” (e.g. 0.10101010 …).

– He will show that these are more extensive 
than the algebraic (and hence rational) 
numbers, but less than the real numbers.

– In particular, they can be proved to be 
enumerable, because the machines that 
generate them are enumerable.

64

§1 Computing Machines (p. 68)

Introducing the Turing machine
– Most of (the short) §1 is concerned with explaining 

the structure of a Turing machine.  But first …

Justification of the Turing machine
– “We have said that the computable numbers are 

those whose decimals [binimals] are calculable by 
finite means.  …  the justification lies in the fact that 
the human memory is necessarily limited.”

– Turing refers forward to §9, where he will argue in 
outline why any finitely calculable number should be 
calculable by a Turing machine …

65

In §9, Turing discusses the nature of 
computation in general, explaining why the 
Turing machine is a suitable model:

“Computing is normally done by writing certain 
symbols on paper.  We may suppose this paper 
is divided into squares …  I assume then that 
the computation is carried out on … a tape 
divided into squares.  I shall also suppose that 
the number of symbols which may be printed is 
finite …”  (Petzold, pp. 190-1)

A General Model of Computation

66

Note here that the “computer”, for Turing, 
is the person performing the computation:

“The behaviour of the computer at any moment is 
determined by the symbols which he is observing, 
and his ‘state of mind’ at that moment. We may 
suppose that there is a bound B to the number of 
symbols or squares which the computer can 
observe at any one moment.  …  We will also 
suppose that the number of states of mind which 
need be taken into account is finite.  …  If we 
admitted an infinity of states of mind, some of 
them will be ‘arbitrarily close’ and will be 
confused.  …”  (Petzold, p. 191)
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The computer’s repertoire of operations is 
precisely circumscribed in terms of “simple 
operations” that cannot be further divided:

“Let us imagine the operations performed by the 
computer to be split up into ‘simple operations’ 
…  Every such operation consists of some 
change of the physical system consisting of the 
computer and his tape.  …  We may suppose 
that in a simple operation not more than one 
symbol is altered.  …  We may … without loss 
of generality, assume that the squares whose 
symbols are changed are always ‘observed’ 
squares.”  (Petzold, p. 192)

68

“Besides these changes of symbols, the simple 
operations must include changes of distribution 
of observed squares.  The new observed 
squares must be immediately recognisable by 
the computer.  … it is reasonable to suppose 
that they can only be squares whose distance 
from the closest of the immediately previously 
observed squares does not exceed a certain 
fixed amount … say … L squares …

It may be that some of these changes
[i.e. of symbol or of observed squares] 
necessarily involve a change of state of mind.”

(Petzold, p. 192-3)
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“The most general single operation must therefore 
be taken to be one of the following:

(A) A possible change of symbol together with a 
possible change of state of mind.

(B) A possible change of observed squares, 
together with a possible change of state of 
mind.

The operation actually performed is determined, 
as has been suggested [highlighted passage in 
slide 66], by the state of mind of the computer and 
the observed symbols.  In particular, they 
determine the state of mind of the computer after 
the operation is carried out.” (Petzold, p. 193)
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“We may now construct a machine to do the 
work of this computer.  To each state of mind of 
the computer corresponds an ‘m-configuration’ 
of the machine.  The machine scans B squares 
corresponding to the B squares observed by the 
computer.  In any move the machine can 
change a symbol on a scanned square or can 
change any one of the scanned squares to 
another square distant not more than L squares 
from one of the other scanned squares.  The 
move which is done, and the succeeding 
configuration, are determined by the scanned 
symbol and the m-configuration.”

(Petzold, p. 194)
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Having sketched this general model of a 
computing machine, based on an abstract 
understanding of what a human computer can 
do, Turing points out – without proof (but 
correctly) – that any number computable by such 
a machine can also be computed by a machine 
of the type defined earlier (in §1 and §2).

Those machines are a subset of the §9 
machines in which B (the maximum number of 
squares scanned at any one time) is one, and L
(the maximum distance between squares 
scanned in successive operations) is also one.

72

The Turing Machine comprises:

A potentially infinite tape divided into numbered 
squares, on which symbols can be written/erased.

A read/write head (as in a tape recorder) which 
can “scan” symbols and also write (or erase) them.

An “m-configuration” (usually now called a “state”), 
taking any of a specified finite range of values –
this is the machine’s active memory.  Computation 
starts from the first, initial, state.

Instructions in the form of a “machine table”, which 
tell it what to do in each possible circumstance …
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Here we see a 
Turtle System 
Turing Machine 
simulator, at 45 
cycles through the 
irrational (probably 
transcendental) 
number program 
that Turing gives 
in §3 of his paper 
(Petzold, p. 87).

A Turing Machine in Action

74

The “Configuration” (pp. 69-70)

At any point, the machine can scan only one square 
on the tape (the “current” or “scanned” square).

As it moves left and right on the tape (one square at 
a time), it scans the symbol on the new current 
square, and takes account of this in its behaviour.

Turing refers to the combination of
– the m-configuration (what we call “state”)

– the “scanned symbol”

as the current “configuration” of the machine.  The 
next action of the machine depends entirely on this.

75

The Repertoire of Actions (pp. 70-1)

At each stage, depending on the configuration 
(i.e. the symbol read from the current square, 
and the current state), the machine can:
– Erase the symbol, or write a new one;

– Move the scanning head one place left or right 
on the tape;

– Change to a new state (m-configuration).

Initially, Turing allows multiple actions to be 
treated as one (though this is restricted when 
the machines come to be regimented at §5).

76

§2 Definitions (p. 72)

Turing focuses on automatic machines, whose 
behaviour is entirely determined by the 
configuration (though he also mentions choice
machines, which are not fully determined).

Any machine will have a limited range of 
symbols that it can read and write.  Turing 
distinguishes:
– figures: “0” and “1”

– other symbols (“symbols of the second kind”)

77

E/F Squares, and Marking (pp. 93-4)

In §3 Turing explains that his machines 
will write figures only on alternate squares:
– These are called “F-squares” (figure);

– The others are “E-squares” (erasable), and 
will be used for working notes.

– “If a symbol β is on an F-square S and a 
symbol α is on the E-square next on the right 
of S, then S and β will be said to be marked
with α.  The process of printing this α will be 
called marking β (or S) with α” (end of §3).

78

The Computed Number (p. 73)

If an automatic machine starts from a blank tape 
in its initial state, then the sequence of figures 
(i.e. “0” and “1”) that it writes on the tape is called 
the “sequence computed by the machine”.

“The real number whose expression as a binary 
decimal (sic.) is obtained by prefacing this 
sequence by a decimal [binary] point is called the 
number computed by the machine.”
– In Turing’s machines, the binary digits of this 

number are supposed to be printed left-to-right
on successive F-squares, and never erased.
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The tape is like this at one stage in the operation 
of the machine Turing specifies on p. 87:

Ə Ə 0 0 1 0 1 x 1 x 0

An Example of a Marked Tape (p. 89)

“schwa” characters 
marking the left end

figures written 
on F- squares

the current 
square

figure “1” written on F-squares, 
each marked with an “x” on the 

adjacent E-square

so far, the computed number 
is 0.0010110 … (in binimal)

80

Circular and Circle-Free Machines (p. 76)

A Turing machine that carries on writing out binary 
digits for ever in this way is called “circle-free”: these 
define computable numbers.
– We are interested in binary fractions, expressed as 

non-terminating binimals (so sequences that 
correspond to rational numbers recur for ever).

– Later, Turing will call a number that defines such a 
circle-free machine a “satisfactory” number (§8).

A Turing machine that stops writing out binary digits 
at any stage is called “circular”.  [Think of it as 
getting stuck in a non-writing loop or “circle”.]
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The Complete Configuration (p. 75)

We have already seen “m-configuration” (i.e. 
state) and “configuration”.  But Turing defines yet 
another use of the word, intended to capture the 
complete state of a computation at any time:
“At any stage of the motion of the machine, the number 
of the scanned square, the complete sequence of all 
symbols on the tape, and the m-configuration will be 
said to describe the complete configuration at that 
stage.  The changes of the machine and tape between 
successive complete configurations will be called the 
moves of the machine.”
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§3  Examples of Computing Machines

Turing first gives an illustration of a machine 
table for a machine that will compute the 
binimal for one third:

0 1 0 1 0 1 0 1 0 1 …

In the full form (Petzold p. 81), this requires 4 
states (starting from “b” for “begin”):
b (“b”) Prints a “0” and moves right into state c
c (“c”) Moves right into state e
e (“e”) Prints a “1” and moves right into state k
k (“k”) Moves right into state b
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m-config. symbol operations final m-config.

b None P0, R c
c None R e
e None P1, R k
k None R b

Configuration Behaviour

b

c

e

k

P0, R

P1, R

R

R

84

Simplifying the Tables

Turing points out that machine tables can be 
greatly simplified if we allow a single transition 
to perform multiple operations (p. 84):

m-config. symbol operations final m-config.

None P0 b

b 0 R, R, P1 b

1 R, R, P0 b
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A More Complex Example

Turing then gives a far more complex 
example, which computes the sequence:

0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 …
(see Petzold pp. 85-90 for details)

– This is irrational, probably transcendental.

– Note Turing’s convention of marking the left-
hand end of the tape (i.e. printing on the first F-
and E- squares) two “schwa” characters: “ƏƏ”.

– Note also that two successive blanks always 
signify the right of the printed part of the tape.
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Listing Complete Configurations

Turing illustrates the working of this machine 
with a sequence of “complete configurations” 
that include the entire non-blank portion of the 
tape, with the state and position indicated.
– The successive complete configurations are 

separated by colons, and Turing then puts the 
state name into the sequence also, just to the left 
of the scanned symbol, e.g. (Petzold p. 92):

b : Ə Ə o 0   0 : Ə Ə q 0   0 :  …

– This format is flagged as “(C)”, cf. Petzold p. 144.
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Getting Used to Turing Machines

To familiarise yourself with how Turing 
machines work, see Chapter 6 of Petzold
(“Addition and Multiplication”).

This departs from Turing’s paper, giving 
two helpful examples:
– A machine to generate all the positive 

integers in sequence (pp. 99-100);

– A machine to calculate the square root of 2 
(pp. 100-108).
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§4 Abbreviated Tables (pp. 113-5)

Initially, one of the most difficult aspects of 
Turing’s paper is understanding his use of 
“skeleton tables” to define machines.

These make use of “m-functions” which enable 
many different “m-configurations” (i.e. states) to 
be defined that have very similar behaviour but 
with slight differences, for example:
– handling different symbols (either to read/find or 

write/mark);

– moving to different states once their work is done.

.
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Turing’s First m-function “Find” (p. 115)

m-config. Symbol Behaviour Final m-config.

Ə L f1(C, B, α)

f(C, B, α) not Ə L f(C, B, α)

None * L f(C, B, α)

α C

f1(C, B, α) not α R f1(C, B, α)

None R f2(C, B, α)

α C

f2(C, B, α) not α R f1(C, B, α)

None R B

This searches for the leftmost α symbol.  If found, state C
is entered at that point; if not, state B is entered.

90

α

None R

f(C, B, α) f1(C, B, α) 

f2(C, B, α) 

Ə  L

C

α

?  R

B
None R

?  R

?  L

Note that “f(C, B, α)” etc. are just 
functional labels for the three states 
whose behaviour is specified here.  
These might be states 314, 315, and 
316 (say) of the relevant machine, but 
the point is that when the first of them 
is entered, the machine will either find 
the leftmost “α” on the tape and enter 
state C on that square, or fail to find 
an “α” and enter state B (on the 
square to the right of the first two 
blanks at the right-hand end).
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α

None R

f(C, B, α) f1(C, B, α) 

f2(C, B, α) 

Ə  L

C

α

?  R

B
None R

?  R

?  L

Recall that we have seen the 
m-function “Find”, defined by a 
“skeleton table” that corresponds 
to the diagram shown here.

After the machine moves into state 
f(C, B, α), it will either find the 
leftmost “α” on the tape and enter 
state C on that square, or fail to 
find an “α” and enter state B (on 
the square to the right of the first 
two blanks at the right-hand end).

93

Since any machine that includes the m-function
f(C, B, α) is guaranteed to reach state C or B when it 
exits from this nexus, we can simplify the diagram:

Summarising “Find”

Some “α” exists  Move to square 
containing leftmost “α” C

B

f(C, B, α) 

No “α” exists  Move
to square after 2 blanks at right

94

“Erase” (3 arguments, erase once)

m-config. Behaviour Final m-config.

e(C, B, α) f(e1(C, B, α), B, α)

e1(C, B, α) E C

Turing (p. 118) defines two versions of this m-function, 
first with three arguments (shown above), then with two.  
On going into state e(C, B, α), the machine transitions 
into state f(e1(C, B, α), B, α), which searches for the 
leftmost “α” and enters state e1(C, B, α) on the square 
containing that “α” (or ends in state B if there is no “α”).  
Then it erases that square (action E) and enters state C.
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Here is the simplified diagram for e(C, B, α):

This m-function will now be used to define e(B, α).

Summarising “Erase”

Some “α” exists  Move to square 
of leftmost “α” and erase it C

B

e(C, B, α) 

No “α” exists  Move
to square after 2 blanks at right

96

“Erase” (2 arguments, repeated erase)

m-config. Behaviour Final m-config.

e(B, α) e(e(B, α), B, α)

Some “α” exists 
Move to square of left-
most “α” and erase it

e(B, α) Be(e(B, α), B, α) 

No “α” exists 
Move to square 
after 2 blanks 
at right

Note how State e(B, α) immediately transitions to state 
e(e(B, α), B, α), which is defined so that after erasing the 
leftmost “α”, it reverts to state e(B, α), and repeats.

(p. 118)
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The “Print at the End” m-function

m-config. Symbol Behaviour Final m-config.

pe(C, β) f(pe1(C, β), C, Ə)

pe1(C, β) Any R, R pe1(C, β)

pe1(C, β) None Pβ C

pe(C, β) 

pe1(C, β)f(pe1(C, β), C, Ə)

Move to the leftmost 
“Ə” (of the two at the 
start of the tape).  In 
a Turing-convention 
machine, this will 
always succeed

C

None 
Print “β”

[this will be on 
the first blank 

F-square]

?  R, R

(p. 120)
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f(r(C), B, α) finds the left-
most “α” then enters state 
r(C), thus moving right and 

entering state C.  So f''(C, B, α) is similar in effect to f(C, B, α), 
except that it moves right after finding the leftmost “α”.

“Left”, “Right”, f' and f'' m-functions

m-config. Behaviour Final m-config.

l(C) L C

r(C) R C

r(C) C

The table has only 
three columns, as 
this behaviour is 
unaffected by tape 
symbols (p. 121)

Move right

f'(C, B, α) f(l(C), B, α)

f''(C, B, α) f(r(C), B, α)
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The “Copy” m-function

m-config. Symbol Behaviour Final m-config.

c(C, B, α) f'(c1(C), B, α)

c1(C) β pe(C, β)

c(C, B, α) f'(c1(C), B, α)

Some “α” exists  Move
to square to the left of
the leftmost “α”

c1(C)

No “α” exists 
 move to 
extreme right

B

pe(C, 0)

pe(C, 1)

0

1

Likewise for all other 
symbols β – pe will 
print the relevant 
symbol at the right 
end of the tape

(etc.)

(p. 121)
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The “Compare” m-function

m-config. Symbol Behaviour Final m-config.

cp(C, A, E, α, β) f'(cp1(C,A,β), f(A,E,β), α)

cp1(C, A, β) γ f'(cp2(C,A,γ), A, β)

cp2(C, A, γ) γ C

cp2(C, A, γ) not γ A

Turing (p. 123) explains the behaviour of this m-function thus: 
“The first symbol marked α and the first marked β are compared.  
If there is neither α nor β,  E.*  If there are both and the 
symbols are alike,  C.  Otherwise  A.”

* note that the Gothic “E” looks very like the “C”!
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A Summary of “Subroutines”

The main tape-manipulating “subroutines” 
defined in this way in§4 are:

f find first “α” (f'/f'' then move left/right)

e erase first “α” (or all “α”s, or all markers)

pe print “β” in the first blank F-square

c copy into the first blank F-square the 
first symbol marked with an “α”

ce copy at the end all the symbols marked 
with an “α”, then erase the “α”s

re replace first “α” (or all “α”s) with “β”
102

cr copy at the end all the symbols marked 
with an “α” (without erasing the “α”s)

cp compares the first symbol marked “α” 
with the first symbol marked “β”, 
entering different next states 
depending on the outcome

cpe likewise, but erase markers if similar

(or compare two sequences …)

g find last “α” (the paper calls this “q”, but
“g” seems intended – see p. 124)

pe2 print 2 characters in two F-squares

ce2, ce3 copy to the end symbols marked α, β
(and γ), erasing the symbols
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§5  Enumeration of 
Computable Sequences

Turing now explains (pp. 131 ff.) how to put all 
possible machine tables into a standard form, 
ultimately reducing each to a single number.
– We convert each table into a table that has one

write and one move/nomove (L/R/N) per line;

– We number all the states (q1, q2 etc.), and all the 
symbols (S0, S1, S2 etc. – S0 is the blank);

– Each line of the table now takes one of the forms 
“qiSjSkLqm”, “qiSjSkRqm”, or “qiSjSkNqm”.

– These can be listed, separated by semicolons.
104

We have a line of text, consisting of quintuples 
(e.g. “q1S2S2Lq2”) separated by semicolons, …
– “In this description we shall replace qi by the letter 

‘D’ followed by the letter ‘A’ repeated i times, and Sj

by ‘D’ followed by ‘C’ repeated j times.”  So:
“q1” becomes “DA”; “q2” becomes “DAA”

“S0” becomes “D”; “S1” becomes “DC”

– This is the standard description (S.D.) of the 
machine (p. 137)

– “If finally we replace ‘A’ by ‘1’, ‘C’ by ‘2’, ‘D’ by ‘3’, ‘L’ 
by ‘4’, ‘R’ by ‘5’, ‘N’ by ‘6’, and ‘;’ by ‘7’ we … have a 
description of the machine [as] an arabic numeral.  
The integer represented by this numeral may be 
called a description number (D.N.) of the machine.”
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“Let us find a description number for the 
machine I of §3.”

This is the machine (p. 81, slide 83) that
prints out the binimal “0 1 0 1 0 1 …”:

Finding the Description Number of a 
Machine: Turing’s Example (pp. 138-40)

b

c

e

k

P0, R

P1, R

R

R
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m-config. symbol operations final m-config.

b None P0, R c

c None R e

e None P1, R k

k None R b

“When we rename the m-configurations its 
table becomes:

q1 S0 PS1, R q2

q2 S0 PS0, R q3

q3 S0 PS2, R q4

q4 S0 PS0, R q1
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Other tables could be obtained by adding 
irrelevant lines such as [the last one here]:”

q1 S0 PS1, R q2

q2 S0 PS0, R q3

q3 S0 PS2, R q4

q4 S0 PS0, R q1

q1 S1 PS1, R q2

This final line never comes into play, as 
the machine always moves right, so the 
current symbol is always blank (S0).
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Turing has illustrated in passing here that many 
different machines can be entirely equivalent in 
behaviour.  Adding an “irrelevant” line to the 
table (i.e. one that is never actually invoked) will 
make no difference at all to the behaviour, and 
hence will generate the same sequence.
– It is also possible to have other machines that 

generate the same sequence by means of 
different state transitions: that are equivalent in 
output, but not trivially so.

– Thus the mapping from “satisfactory” machines to 
computable numbers is surjective (each such 
machine generates just one computable number) 
but it is not injective.
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Having explained his two illustrative
tables, Turing continues (p. 139):

“Our first standard form would be
q1 S0 S1 R q2 ; q2 S0 S0 R q3 ; q3 S0 S2 R q4 ; 
q4 S0 S0 R q1 ; .

The standard description is

DADDCRDAA;DAADDRDAAA;

DAAADDCCRDAAAA;DAAAADDRDA;”

[“q1”“DA”, “S0”“D”, “S1”“DC”,
“q2”“DAA”, “q3”“DAAA”, etc.]
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Now, as Turing explained earlier, we simply
replace ‘A’ by ‘1’, ‘C’ by ‘2’, ‘D’ by ‘3’, ‘L’ by ‘4’,
‘R’ by ‘5’, ‘N’ by ‘6’, and ‘;’ by ‘7’, to yield the
corresponding description number …

“A description number is
313325311731133531117311133225
31111731111335317

and so is 
313325311731133531117311133225
3111173111133531731323253117”

The second number here is for the machine
with the “irrelevant” final quintuple.
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“To each computable sequence there 
corresponds at least one description number, 
while to no description number does there 
correspond more than one computable 
sequence.  The computable sequences and 
numbers are therefore enumerable.”  (p. 138)

This is a significant result: it follows that 
“nearly all” of the real numbers in Cantor’s 
universe are not computable.

The Computable Numbers 
Are Enumerable

112

§6  The Universal Machine

In§6 of his paper (pp. 143-9), Turing explains 
how to design “a single machine which can be 
used to compute any computable sequence.

If this machine U is supplied with a tape on the 
beginning of which is written the S.D of some 
computing machine M,  then U will compute the 
same sequence as M .”

As Petzold remarks, Turing starts rather oddly:

“Let us first suppose that we have a machine M’ ' 
which will write down on the F-squares the
successive complete configurations of M. ”

.
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Recalling Machine II

Turing now refers back to Machine II of §3
(pp. 87-92, slides 85-6), which generates the 
sequence “0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 …”.

– This again seems odd, because that machine was 
defined with multiple operations in most lines of the 
table (cf. p. 84 and slide 84), whereas at this point in 
the paper Turing is restricting his attention to simpler 
“standard form” machines (p. 132, slide 103).

– Ignore this detail, because the process Turing is 
about to illustrate using Machine II and format “(C)” 
will work with standard form machines.
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Generating Complete Configurations

Recall from slide 86 how Turing lists sequences 
of “complete configurations” that include the 
entire non-blank portion of the tape, with the state 
and position indicated, e.g. (p. 92):

b : Ə Ə o 0   0 : Ə Ə q 0   0 :  … (C)

At pp. 144-6, Turing returns to and modifies this 
format by replacing the state codes (b o q) with 
“DA”, DAA”, and “DAAA”, blanks by “D”, “0” by 
“DC”, “1” by “DCC”, and “Ə” by “DCCC”, to fit with 
the standard description.
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The result of these substitutions into (C) is:
“DA : DCCCDCCCDAADCDDC :

DCCCDCCCDAAADCDDC : … (C1)

(This is the sequence of symbols on F-squares.)”

– Turing (p. 146) means that the machine M’ ', which 
is being designed to print out the successive 
configurations of machine M , is to do so in this 
form (and on the F-squares). 

He remarks that “if M can be constructed, then so 
can M’ '.” It would operate by referring back to a 
copy of the S.D. of M, written on the tape.

Machine M’ '
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M’ ' will print out, in sequence, the complete 
configurations that M would produce.

At each stage, it will have a record of the last 
complete configuration (at the right of the tape), 
and a record of M’ ’s rules (in the form of the 
standard description) at the left of the tape.

It will shuttle back and forth, checking the latest 
“configuration” (i.e. state and symbol) from the 
right, then finding the rule that this matches at 
the left, then moving back to build the next 
complete configuration accordingly on the right.

How Machine M’ ' Will Work
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Here the configurations in (C1), as generated by 
[non-standard] Machine II (p. 87), are underlined:

“DA : DCCCDCCCDAADCDDC :
DCCCDCCCDAAADCDDC : …”

(this sequence is built up at the right of the tape)

– Recall that the complete configurations are separated by 
colons, and within them, just one state (represented by “D” 
followed by a sequence of “A”s) will appear, followed by 
the “scanned symbol” on the current square (represented 
by “D” followed by a sequence of “C”s).

– You may find it helpful to refer to Turing’s text on p. 151.

Identifying the Configuration
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We can underline the “trigger” configurations within 
the standard description of Machine I (pp. 81, 139-40) 
(note we can’t do this for Machine II, as it’s non-standard):

“DADDCRDAA;DAADDRDAAA;
DAAADDCCRDAAAA;DAAAADDRDA”

(this is put at the left of the tape to start with)

– Overall, the first quintuple has been translated thus: 

Identifying the Matching Rule

Initial state Read symbol Write symbol Move Final state

b None 0 R c

q1 S0 S1 R q2

DA D DC R DAA
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To mimic M’ ’s generation of a computable number, 
we also have to print out at each stage any new
figures (i.e. “0”s and “1”s) produced by the 
transition.  These will be colon-separated, between 
the successive complete configurations (pp. 147-8).

If M’ ' has been designed appropriately, then:

Replacing the standard description of M’ (at the 
left of the tape) with the standard description of a 
different machine N will mean that we end up 
with the sequence of figures that N would 
generate on the tape, instead of the sequence of 
figures that M would generate.

Achieving Universality

120

§7 describes his Universal Machine in detail, 
making use of many of the “subroutine” 
functions whose skeleton tables were in §4.

This was the first proof that there could be a 
“universal” programmable machine, capable 
of computing any number that we know how 
to compute, when given the recipe.

By extension, it seems clear that any other 
computable function will be achievable.

§7  Detailed Description of the 
Universal Machine
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Recall from §5 that Turing has shown that 
the computable numbers are enumerable.

But he now remarks that Cantor’s diagonal 
argument might seem to prove otherwise.

If the computable numbers are enumerable, 
then we should be able to form a list that 
contains them all (they are all, of course, 
endless binary fractions of “0”s and “1”s).

§8  Application of the Diagonal 
Process
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Suppose, then, that this is the list:
1: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
2: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
3: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
4: 0.𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 …
… …

Consider now the number β (see p. 174) that 
we get if we take the digits in order down the 
long diagonal of this list, changing “0” into “1” 
and “1” into “0”.  That number must differ 
from every number in the list, so if Turing is 
correct, it cannot be a computable number.
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Yet how can β fail to be computable?  If we go 
through the integers one after another, it is 
relatively easy to identity those that are 
description numbers of Turing machines and 
then to construct the standard description.

Can’t we just do this repeatedly, then mimic in 
turn the 1st, 2nd, … nth … machine until we get 
the nth digit, swap “0” for “1” and continue?

Why won’t this give a way of computing β, and 
thus refute Turing’s claim of enumerability?

What Prevents Computation of β?
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The answer is that to complete the diagonal 
process and compute β, we have to do more than 
identify the integers that are description numbers 
of Turing machines.  A computable number is 
generated only by a circle-free machine, so we 
must compute whether or not any given integer is 
the description number of a circle-free machine.

Since computable construction of the diagonal 
number β would contradict the enumerability of 
the computable numbers, and since the latter has 
already been proved, Turing concludes that there 
cannot be any “general process” for “finding out 
whether a given number is the D.N. of a circle-free 
machine ... in a finite number of steps” (pp. 177-8).
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Turing remarks that the reader might feel that 
“there must be something wrong” with this 
argument.  He then explains where the 
attempt to construct β fails (pp.179-83).
It breaks down when our would-be machine H
comes to check its own description number N.  
For then in order to determine the N th digit that 
it is supposed to output, it must first discover 
what the Nth digit of machine number N (i.e. H
itself) would be.  So it never finds the answer. 

Where the Attempt Fails
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Another “Diagonal” Argument

Turing’s argument here is reminiscent both of 
Cantor’s diagonal arguments, and also Gödel’s 
proof (which involves a formula that indirectly 
refers to its own unprovability).

He has shown that no Turing machine can be 
made to predict with certainty whether a given 
Turing machine, will, or will not, be “circle-free”.

Using a conventional programming language, 
we can prove a related result of more general 
importance, and with surprising ease ...

The Halting Problem
Suppose we have the text of a computer 
program P (in a standard programming 
language), taking input from a text file, T.

We would like to have a testing procedure H
which will examine P and T, and then reliably 
work out the answer to this question:
– Will program P, when run with input T, 

eventually halt, or will it never terminate?

Turing’s argument implies that H is impossible 
(though of course his own machines never halt 
if “satisfactory” – see Petzold pp. 328-9).

128

Suppose we have such a procedure H:

We now modify that program:

H

Text of 
program P

Text of 
input T

H
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P would halt 
given input T

P would loop 
given input T

print(“YES”)

print(“NO”)

repeat
print(“YES”)

until 0=1

print(“NO”)

Text of 
program P
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Clearly if the initial program is possible, then the 
modified version must be possible too, because 
the changes are so simple:

– The input process has modified so that instead of 
taking both a program file P and a text file T as 
input, it uses the program file in place of T – hence 
its verdict is based on whether or not the specified 
program file P halts when given its own text as 
input.  (The modified program could simply start by 
duplicating file P and taking the duplicate as T.)

– The output process has also been very simply 
modified, so that if the “it would halt” test comes 
out positive, the program goes into an infinite loop.

The Contradictory Program Q

Does program Q halt when given itself as input?  
If it does, then it doesn’t, and if it doesn’t, then it 
does!  So Q is an impossible program, and 
therefore H must have been impossible too.

H
Input: text 
of some 
program

repeat
print(“YES”)

until 0=1

print(“NO”)

131 132

Having proved that no machine can provide a 
reliable circle-free test, Turing goes on to 
prove a lemma that will be used later:

“We can show further that there can be no machine 
E which, when supplied with the S.D of an 
arbitrary machine M,  will determine whether M
ever prints a given symbol (0 say).” (p. 183)

The proof follows the familiar pattern, showing 
that if E were possible, then a diagonally 
impossible machine (namely, a circle-free 
testing machine) would also be possible.

An Important Lemma
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Suppose we have our 0-testing machine E, to be 
applied to some arbitrary machine M.

We then consider machines M1, M2, … Mn, …, 
which are just like M except that they print out n
fewer “0”s (by replacing the first n “0”s with 
another symbol, e.g. “ϕ” – this can be done 
mechanically by adding more states).
Now we create another machine G from E, 
which operates by mechanically testing M, M1, 
M2, … in turn and outputting a “0” each time if 
and only if E   would decide that the tested
M -machine would never generate a “0”.

So, for example, if M would print 4 “0”s, we get:
134

Machine output 1 output 2 output 3 output 4 output 5 G outputs

M 0 0 0 0 - -

M1 ϕ 0 0 0 - -

M2 ϕ ϕ 0 0 - -

M3 ϕ ϕ ϕ 0 - -

M4 ϕ ϕ ϕ ϕ - 0

M5 ϕ ϕ ϕ ϕ - 0

G will print “0” an infinite number of times, 
unless M prints “0” infinitely often, in which case 
G will never print “0”.

We now test G itself usingE, to find out whether 
G ever prints “0”.  This yields a test whether or 
not M prints “0” infinitely often.
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So if machine E exists, it follows that we can 
create a general process to determine whether 
any machine M prints “0” infinitely often.  
Clearly exactly the same process can be 
followed for “1” (p. 186).

But then, “By a combination of these processes 
we have a process for determining whether M
prints an infinity of figures, i.e. we have a 
process for determining whether M is circle-
free.  There can therefore be no machine E. ”

Deducing the Lemma
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§9 is devoted to showing “that the ‘computable’ 
numbers include all numbers which would 
naturally be regarded as computable”.

Generalised, this is now widely known as:

The Church-Turing Thesis
Any effectively calculable function can be 
computed by a Turing machine (or an 
equivalent process).

§9  The Extent of the 
Computable Numbers

137

Turing (§9, p. 190) proposes three types of 
arguments for his claim about the generality of 
Turing machines (the third involves outlining “large 
classes of numbers which are computable”, and 
constitutes§10 – see slide 145 below).

The first type of argument (pages190-4) maintains 
that a Turing machine can compute any number 
that would be computable by a human following a 
definite process.  This was anticipated back in §1, 
at p. 68 (see Lecture 3, slides 65-71).

Turing’s First Argument
for the Church-Turing Thesis

138

Turing’s second type of argument (if not the 
particular variant he gives in this paper) has 
almost certainly been the most influential.

– Here he first argues (pp. 221-8) that “If the 
notation of the Hilbert functional calculus [i.e. 
first-order predicate logic] is modified so as to 
be systematic, and so as to involve only a finite 
number of symbols, it becomes possible to 
construct an automatic machine, K , which will 
find all the provable formulae of the calculus.”

Turing’s Second Argument
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Turing sketches how a Turing machine can 
be defined to generate in turn all provable 
formulae of a system of axioms expressed in 
predicate formulae.
– As Petzold explains (pp. 220-1), this is known 

as a “British Museum” algorithm.

Turing then briefly points out (p. 229) that any 
Turing machine can be defined in terms of 
predicate formulae.  (This is demonstrated in 
far more detail in §11.)

A “British Museum Algorithm”
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Thus Turing has argued, in effect:

– that anything computable through predicate 
logic can be computed by a Turing machine;

– “that the numbers ... definable [in terms of 
predicate logic] by the use of axioms include 
all the [Turing-machine] computable 
numbers.” (p. 229)

So he has thereby sketched “A proof of the 
equivalence of two definitions” of computable 
numbers, as he anticipated at p. 190.

An Important Equivalence
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In early April 1936, six weeks before Turing 
submitted his own paper (on May 28), Alonzo 
Church of Princeton sent his two-page “A Note 
on the Entscheidungsproblem” for publication 
in Volume 1 of The Journal of Symbolic Logic.

– Church had proved, using his “Lambda Calculus”, 
that the Entscheidungsproblem is unsolvable.

– Turing’s paper was considered to be of sufficient 
interest and novelty to be worth publishing none-
theless, but he was asked to add an Appendix.

Turing is “Scooped” by Church
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Turing’s Appendix proves in outline “The 
theorem that all effectively calculable
(λ-definable) sequences are computable [by 
a Turing machine] and its converse” (p. 290)
– See Petzold Chapter 15 for much more on the 

Lambda Calculus etc.; also pp. 325-31.

In Volume 2 of The Journal of Symbolic 
Logic (1937), Turing’s “Computability and
λ-definability” provided a more rigorous proof.  
The new paper starts as follows:

Turing’s Appendix
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“Several definitions have been given to express an 
exact meaning corresponding to the intuitive idea of 
‘effective calculability’ as applied for instance to 
functions of positive integers.  The purpose of the 
present paper is to show that the computable functions 
introduced by the author are identical with the λ-defin-
able functions of Church and the general recursive 
functions due to Herbrand and Gödel and developed by 
Kleene.  It is shown [below] that every λ-definable 
function is computable and that every computable 
function is general recursive.”  (Petzold, p. 298)

– Church and Stephen Kleene (also in 1936) had already 
proved that recursive and λ-definable functions coincide, 
so it indeed followed that all three notions are equivalent.
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It seems hard in principle – and maybe even 
philosophically dubious – to attempt to prove
a thesis which identifies an informal notion 
(i.e. “effective calculability”) with a formal 
notion (e.g. “Turing-machine computability”).

But it is striking that all plausible attempts to 
give a formal precisification of the informal 
notion have turned out to be equivalent.

– This explains why the C-T Thesis is so widely 
endorsed, though it remains controversial.

Assessing the Church-Turing Thesis
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§10 presents a range of results, including:
– various combinations of computable functions must be 

computable (pp. 240-1, some are proved at 247-56);

– the root of a computable function that crosses zero is 
computable (p. 244), as is the limit of any “computably 
convergent sequence” (p. 246);

– “The sum of a power series whose coefficients form a 
computable sequence is a computable function in the 
interior of its interval of convergence.” (p. 247)

– π and e are computable (p. 247);

– “all real algebraic numbers are computable” (p. 247).

§10  Examples of Large Classes of 
Numbers which are Computable
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§11 finally comes round to Hilbert’s famous 
Entscheidungsproblem, the inspiration for the 
entire paper (even though the invention of the 
Turing machine has since been seen as of 
massive independent significance).

Turing proves that this is insoluble using the 
earlier lemma, and showing that for any 
machine M , it is possible to construct a formula 
of predicate logic that is equivalent to the 
statement that M at some point prints an “0”.

§11  Application to the 
Entscheidungsproblem
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Turing refers to Hilbert’s presentation of “the 
restricted functional calculus” (i.e. what we 
call predicate logic without identity).  Turing 
then presents his goal as follows:

“I propose, therefore, to show that there can be 
no general process for determining whether a 
given formula U of the functional calculus K is 
provable, i.e. that there can be no machine which, 
supplied with any one U of these formulae, will 
eventually say whether U is provable.” (p. 260)

He explains (pp. 261-2) that this result is 
quite different from Gödel’s, as we saw in the 
second lecture (slide 59).
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As Turing remarks (p. 262), the proof appears 
“somewhat lengthy [but] The underlying ideas are 
quite straightforward.”

As illustrated in the next slide, he defines predicates  
adequate to describe the configuration and 
behaviour of Turing machines (pp. 263-7).

Using these predicates (or “propositional functions”), 
he defines, given any machine M , his key formula 
Un(M ), expressing the implication from that 
machine’s specification to the consequence that a 
zero will be printed (p. 267).  By the earlier lemma 
(slides 132-5), this will in general be undecidable.

From Machines to Predicate Logic
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𝐼 𝑥, 𝑦 p. 264

In the complete configuration x,
the square y is scanned.

𝐾 𝑥 p. 264

In the complete configuration x,
the m-configuration [i.e. state] is 𝑞 .

𝑅 𝑥, 𝑦 p. 263

In the complete configuration x (of M ),
the symbol on the square y is 𝑆 .

Three Predicates: Scan/State/Symbol

150

These predicates enable us to specify any complete 
configuration of a Turing machine, in terms of the step 
number (or “cycle”) of that configuration.

The Turing Machine rules (i.e. quintuples or machine 
table) specify what should happen in moving from one 
cycle to the next.  The next few slides explain how 
Turing represents this (and can usefully be read together 
with p. 265-6).  To do so, he also needs a predicate for 
numerical succession (which he had introduced earlier 
at p. 225, in preparation for discussing Peano’s axioms):

𝐹(𝑥, 𝑦) p. 264

y is the immediate successor of x (i.e. 𝑦 = 𝑥 + 1).

Expressing Turing Machine Rules
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Suppose our machine includes quintuple qi Sj Sk L ql

and that in cycle x of this machine, square y is 
scanned, in state qi and while containing symbol Sj

(so the quintuple would apply on that cycle).

Applying the quintuple, then: in the next cycle x′, 
square y will change to symbol Sk 

and the machine 
will move left (to scan square y′) and into state ql.  
Clearly 𝑥 = 𝑥 + 1 and 𝑦 = 𝑦 − 1, so we have:

𝐹 𝑥, 𝑥′ & 𝐹 𝑦′, 𝑦

and for the two cycles a scan/state/symbol formula:

Cycle x 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦

Cycle x' 𝐼 𝑥′, 𝑦′ & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦

Scanned square State           Symbol 152

We also need to express that all squares other than y will 
contain the same symbol in cycles x and x'.

This yields the following formula (which Turing abbreviates 
as “Inst {qi Sj Sk L ql}”, p. 265) to express that quintuple:

(x, y, x', y')  x, y, x', and y'

{ 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦 IF cycle x scan/state/symbol

& 𝐹 𝑥, 𝑥′ & 𝐹 𝑦′, 𝑦 & x' = x+1, y' = y-1

→ THEN

(𝐼 𝑥′, 𝑦′ & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦 cycle x' scan/state/symbol

& (z) [ 𝐹 𝑦′, 𝑧 & z [either z=y (i.e. y'+1)

 ([𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧 ] & or square z keeps

[𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧 ] & …])])}    the same symbol]
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The formulae for Inst {qi Sj Sk R ql} and Inst {qi Sj Sk N ql} – to 
deal with quintuples in which the machine moves right or 
stays on the same square – will differ accordingly.

Thus Inst {qi Sj Sk R ql} will be the formula (p. 266):

(x, y, x', y')  x, y, x', and y'

{ 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦 IF cycle x scan/state/symbol

& 𝐹 𝑥, 𝑥′ & 𝐹 𝑦, 𝑦′ & x' = x+1, y' = y+1

→ THEN

(𝐼 𝑥′, 𝑦′ & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦 cycle x' scan/state/symbol

& (z) [ 𝐹 𝑧, 𝑦′ & z [either z=y (i.e. y'-1)

 ([𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧 ] & or square z keeps

[𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧 ] & …])])}    the same symbol]
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Inst {qi Sj Sk N ql} involves no machine movement, but we 
still keep y' in the formula in order to express the identity of 
z with y (we cannot write “z=y”, since Hilbert’s restricted 
functional calculus does not include the identity sign):

(x, y, x', y')  x, y, x', and y'

{ 𝐼 𝑥, 𝑦 & 𝐾 𝑥 & 𝑅 𝑥, 𝑦 IF cycle x scan/state/symbol

& 𝐹 𝑥, 𝑥′ & 𝐹 𝑦, 𝑦′ & x' = x+1, y' = y+1

→ THEN

(𝐼 𝑥′, 𝑦 & 𝐾 𝑥′ & 𝑅 𝑥′, 𝑦 cycle x' scan/state/symbol

& (z) [ 𝐹 𝑧, 𝑦′ & z [either z=y (i.e. y'-1)

 ([𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧 ] & or square z keeps

[𝑅 𝑥, 𝑧 → 𝑅 𝑥′, 𝑧 ] & …])])}    the same symbol]
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Every quintuple in machine M can be represented 
by one of these long formulae – which we have 
abbreviated as Inst {qi Sj Sk N ql} , Inst {qi Sj Sk N ql}
or Inst {qi Sj Sk N ql}.  We then take the conjunction
of all these (pp. 267, 311), and call that Des(M ).
– Thus Des(M ) gives a complete description, in 

predicate logic, of the operation of M ’s machine table.

Following the strategy explained in slide 148 
above, Turing next uses Des(M ) to create another 
formula, representing the statement that M will at 
some point print a zero (character S1) on its tape.

From Machine Description To 
(Undecidable) Zero-Print Statement

156

A complication here is that Turing needs to specify 
the relevant properties of the number sequence 
(corresponding to the sequence of configurations).

These properties are captured by Peano’s Axioms, 
of which this is one version (see Petzold p. 223):
1. Zero is a number.

2. Every number has a successor that is also a number.

3. Zero is not the successor to any number.

4. Two numbers that are the successors to the same 
number are equal.

5. If P(0) is true, and if P(x) implies P(successor(x)) for all 
numbers x, then P(x) is true for all numbers x.

Peano’s Axioms
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Turing’s original paper slips up in defining the Peano
conditions (pp. 226-7, 267-8).  He provided a correction 
(pp. 268, 311), which usesQ as an abbreviation for:

 (𝑥)(∃𝑤)(𝑦, 𝑧)

𝐹 𝑥, 𝑤   & 𝐹 𝑥, 𝑦 → 𝐺 𝑥, 𝑦  

& (𝐹 𝑥, 𝑧 &𝐺 𝑧, 𝑦 → 𝐺 𝑥, 𝑦 )

& 
𝐺 𝑧, 𝑥   (𝐺 𝑥, 𝑦 &𝐹 𝑦, 𝑧 )

 (𝐹 𝑥, 𝑦 &𝐹 𝑧, 𝑦 ) → (¬𝐹 𝑥, 𝑧 )

If x is any number, there is some w which is the successor of x,
and for all y and z, if y is a successor of x then y is greater than x,

and if z is a successor of x and y is greater than z then y is greater than x,
and if either x is greater than z,

or y is greater than x and z is a successor of y,
or y succeeds both x and z,

then z is not a successor of x.

(But even this isn’t ideal, e.g. it doesn’t rule out branching.) 158

The formula Un(M ) for machine M, which is in 
general undecidable, is as follows (pp. 268, 311):

(u) [Q & (𝑦)𝑅 𝑢, 𝑦 & 𝐼 𝑢, 𝑢 & 𝐾 𝑢 & Des(M ) ]
→  ∃𝑠 (∃𝑡)𝑅 𝑠, 𝑡

– Apart from Q and Des(M ), the antecedent of this 
conditional states that there is some u (namely zero), the 
number of a configuration (i.e. the initial one) in which:  
(R) S0, the blank, is on every square;  (I) square zero is 
scanned;  and (K) the machine is in state q1.

– The consequent says that there exist some s and t such 
that S1, the zero symbol, appears on square t of the tape 
in cycle (i.e. configuration number) s.

The Undecidable Formula Un(M )

159

Now Turing sets out to prove two lemmas, 
connecting the provability of Un(M ) with 
the appearance of S1 (“0”) on the tape 
when machine M runs:

– Lemma 1 (pp. 269-76):  “If S1 appears on the 
tape in some complete configuration of M ,  
then Un(M ) is provable”.

– Lemma 2 (pp. 276-77):  “If Un(M ) is provable, 
then S1 appears on the tape in some complete 
configuration of M ”.

Two Lemmas To Prove

160

To prove Lemma 1, Turing formulates a sequence 
of formulae CC0, CC1, CC2, etc., representing the 
sequence of complete configurations as M 
proceeds (p. 271).

Here he uses an earlier abbreviation (from p. 268), 
with “A(M )” standing for:

Q & (𝑦)𝑅 𝑢, 𝑦 & 𝐼 𝑢, 𝑢 & 𝐾 𝑢 & Des(M )

He also uses “F(n)” to abbreviate the numeric 
successor relations (from 0 up to n inclusive).

He then shows, by induction, that “all formulae of 
the form A(M ) & F(n) → CCn are provable” (p. 272: 
base case pp. 272-3; induction step pp. 273-5).

161

Lemma 1 follows because, assuming that “0” 
(i.e. S1) does indeed appear on the tape in 
configuration n (say), then CCn (which 
includes all relevant 𝑅 𝑛, 𝑦 conjuncts), must 
include 𝑅 𝑛, 𝑦 for some square y.

Lemma 2 – that if Un(M ) is provable, then S1

appears in some complete configuration of M
– must be true (p. 277) from substitution of 
the relevant propositional functions in Un(M ).

Thus (p. 277), referring back to the lemma of 
§8, “We are now in a position to show that 
the Entscheidungsproblem cannot be solved”.

162

To sum up, the lemma of §8 proved that no 
machine can be constructed which will reliably 
determine whether any specified machine will 
ever print a “0”.

But since that behaviour (printing a “0”, or not 
doing so) can be captured by a predicate logic 
formula Un(M ), it follows that no machine can 
be constructed which will reliably determine 
whether or not that formula is provable.

Hence Hilbert’s Entscheidungsproblem – to 
devise a mechanical procedure to determine 
whether or not any predicate logic formula is 
provable, has no solution.  QED!!
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Useful Books

Books on the Philosophy of AI
– Jack Copeland, Artificial Intelligence: A 

Philosophical Introduction (Blackwell, 1993).

– Margaret A. Boden (ed.), The Philosophy of 
Artificial Intelligence (OUP, 1990).

– Douglas R. Hofstadter and Daniel C. Dennett 
(eds), The Mind’s I (Penguin, 1981).

The Chinese Room Argument
– John Searle, Minds, Brains and Science 

(Penguin, 1989).

165

Useful Collections of Papers

On the Turing Test
– S. Barry Cooper and Jan van Leeuwen (eds), 

Alan Turing: His Work and Impact (Elsevier, 
2013) – has a range of papers on the Turing Test.

– Peter Millican and Andy Clark (eds), Machines 
and Thought (OUP, 1996) – the introduction and 
the first seven papers are relevant.

On the Chinese Room Argument
– John Preston and Mark Bishop (eds), Views into 

the Chinese Room (OUP, 2002).

166

Useful Web Resources

Stanford Encyclopedia of Philosophy
– At http://plato.stanford.edu/ - see articles on:

“The TuringTest”

“The Chinese Room Argument”

Web Resources on the Turing Test
– On Andrew Hodges’ “Alan Turing” website, the 

paper “Alan Turing and the Turing Test”: 
http://www.turing.org.uk/publications/testbook.html

– Ayse Pinar Saygin, Ilyas Cicekli & Varol Akman, 
“Turing Test: 50 Years Later”: http://www.cs.bilkent. 
edu.tr/~akman/jour-papers/mam/mam2000.pdf
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Robin Gandy, Turing’s student, wrote:
– “The 1950 paper was intended not so much as a 

penetrating contribution to philosophy but as 
propaganda.  … He wrote this paper – unlike his 
mathematical papers – quickly and with enjoyment.  
I can remember him reading aloud to me some of 
the passages – always with a smile, sometimes 
with a giggle.  Some of the discussions of the paper 
… load it with more significance than it was 
intended to bear.”

(in Millican & Clark (eds) 1996, p. 125)

Turing’s 1950 Paper: “Computing 
Machinery and Intelligence”

168

§1  The Imitation Game

Turing starts his paper a bit confusingly:

– “I propose to consider the question, ‘Can 
machines think?’ …”

– “If the meaning of the words ‘machine’ and 
‘think’ are to be found by examining how they 
are commonly used … the answer … is to be 
sought in a statistical survey.  But this is 
absurd.  Instead … I shall replace the 
question by another, which is closely related 
to it … [but] relatively unambiguous.”
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Turing’s replacement question is set in the 
context of an “imitation game”, which is first 
introduced in a form requiring an interrogator, 
C, to guess the gender of two participants
(a man, A, and a woman, B), based on the 
answers they give to C’s questions.

The man, A, attempts by his answers to 
convince C that he is the woman and B is the 
man.  The woman, B, attempts to convince C
that she is indeed the woman.

The Gender Imitation Game

The Judge or “Interrogator”

The man pretends to be a woman.  If the 
interrogator can’t reliably distinguish them from 
their verbal responses, then the man succeeds.

“My hair is shingled, and the longest 
strands are about nine inches long”

“I am the woman, don’t listen to him!”

171

The interrogator obviously needs to be in a 
different room from the participants, so as 
to be unable to see them.  But further:
– “In order that tones of voice may not help the 

interrogator the answers should be written, or 
better still, typewritten.  The ideal 
arrangement is to have a teleprinter
communicating between the two rooms.”

– Communicating text by teleprinter also makes 
the game easily extendable to a computer …

Constraints on the Game

172

“We now ask …, ‘What will happen when a machine 
takes the place of A (the deceitful man) in this 
game?’  Will the interrogator decide wrongly as 
often when the game is played like this as he does 
when the game is played between a man and a 
woman?  These questions replace our original, ‘Can 
machines think?’”

The relationship between these questions and the 
original is left obscure.  And it’s not clear (until §2 
and §5) that the computer’s role is to imitate a 
human (“man”) rather than specifically a woman.

The Computer Imitation Game

The Turing Test

The Judge or “Interrogator”

If the interrogator can’t reliably distinguish the 
computer from the human, then the computer 
program must be judged to be intelligent. 174

§2 helps to clarify Turing’s idea: the interro-
gator’s questions can be used to elicit the 
computer’s “knowledge” about “almost any … 
of the fields of human endeavour”, e.g. poetry 
composition, arithmetic, or chess.

The teleprinter setup “has the advantage of 
drawing a fairly sharp line between the 
physical and the intellectual capacities of a 
man”.  In the paper “it will be assumed that the 
best strategy is to try to provide answers that 
would naturally be given by a man”.

§2  Critique of the New Problem
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Flexibility of the Q&A Format

Q:  Please write me a sonnet on the subject of the Forth 
Bridge.

A:  Count me out on this one.  I never could write poetry.

Q:  Add 34957 to 70764.

A:  (Pause about 30 seconds and then give as answer)  
105621.

Q: Do you play chess?

A:  Yes.

Q: I have K at my K1, and no other pieces.  You have only 
K at K6 and R at R1.  It is your move.  What do you play?

A:  (After a pause of 15 seconds)  R-R8 mate.
176

But Turing notes the possible objection: “May not 
machines carry out something which ought to be 
described as thinking but which is very different 
from what a [human person] does?”

He responds: “This objection is a very strong 
one, but at least we can say that, if, nevertheless, 
a machine can be constructed to play the 
imitation game satisfactorily, we need not be 
troubled by this objection.”
– This seems to be suggesting that success in the 

imitation game is sufficient to prove intelligence, 
but not a necessary condition.

Bias in Favour of Human Thought?

177

Later, in§6 (4), Turing will give an example of 
a viva voce examination, concerning the choice 
of words in a poem, which seems quite 
convincing as a demonstration of intelligence.
– If conversation of this level of sophistication and 

focus were to be produced by a computer over a 
wide range of topics, in a way that involved 
appropriate meaning-sensitive processing and 
without any form of “cheating” (e.g. use of “canned” 
responses”), it might indeed be hard to deny that 
the machine was demonstrating “intelligence”.

The Viva Voce Example

178

Interrogator:  In the first line of your sonnet which reads 
“Shall I compare thee to a summer’s day”, would not “a 
spring day” do as well or better?

Witness:  It wouldn’t scan.

How about “a winter’s day”?  That would scan all right.

Yes, but nobody wants to be compared to a winter’s day.

Would you say Mr. Pickwick reminded you of Christmas?

In a way.

Yet Christmas is a winter’s day, and I do not think Mr. 
Pickwick would mind the comparison.

I don’t think you’re serious.  By a winter’s day one means 
a typical winter’s day, rather than a special one like 
Christmas.

179

“It is natural that we should wish to permit 
every kind of engineering technique to be 
used in our machines”, including experimental 
techniques that result in a machine whose 
operation is unclear even to the engineers;

However “we wish to exclude from the 
machines men born in the usual manner”.

Seeking for an appropriate rule to do this, 
Turing restricts his test to digital computers.

§3  The Machines concerned 
in the Game

180

“The idea behind digital computers [is] that 
these machines are intended to carry out 
any operations which could be done by a 
human computer.” – here we see clear 
echoes of the 1936 paper.

Turing then gives an outline of how a 
digital computer might operate, remarking 
that “they can in fact mimic the actions of a 
human computer very closely”.

§4  Digital Computers
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Turing considers some particular cases:

– A “digital computer with a random element”, which 
can be simulated by including a pseudo-random 
process (e.g. using digits of π).

– A “computer with an unlimited store”; “Such 
computers have special theoretical interest and 
will be called infinitive capacity computers”.

He ascribes the idea of a digital computer to 
Charles Babbage, thus illustrating that they 
can be mechanical and need not be electrical. 

Varieties of Digital Computer

182

Even if processes in the world are really continuous 
(and chaotic – Turing here gives an illustration of 
what is now known as the “butterfly effect”), some of 
them can be usefully modelled as discrete.

The behaviour of “discrete state machines” is utterly 
predictable, and “There is no reason why this 
calculation should not be carried out by means of a 
digital computer.  Provided it could be carried out 
sufficiently quickly the digital computer could mimic 
the behaviour of any discrete state machine.”

Thus digital computers “are universal machines.”

§5  Universality of Digital Computers

183

Because digital computers are universal, 
the Imitation Game question reduces to:

– “Let us fix our attention on one particular digital 
computer C.  Is it true that by modifying this 
computer to have an adequate storage, suitably 
increasing its speed of action, and providing it with 
an appropriate programme, C can be made to play 
satisfactorily the part of A in the imitation game, 
the part of B being taken by a man?”

– Apparently C is supposed to be imitating a human, 
rather than playing a gender-related game.

The Programming Question

184

Turing now sketches his own views on “our question, 
‘Can machines think?’ and the variant of it quoted at 
the end of the last section.”

He then considers, and rejects, nine objections:
(1) “Theological”,  (2) “Heads in the Sand”,
(3) “Mathematical”,  (4) “The Argument from 
Consciousness”,  (5) “Arguments from Various 
Disabilities”,  (6) Lady Lovelace’s Objection,  (7) 
“Argument from Continuity in the Nervous System,  (8) 
“The Argument from Informality of Behaviour”, and (9) 
“The Argument from Extra-Sensory Perception”.

§6  Contrary Views on the Main Question

185

Before considering the objections, however, 
Turing offers his own predictions:
– “I believe that in about fifty years’ time it will be 

possible to programme computers, with a storage 
capacity of about 10 , to make them play the imitation 
game so well that an average interrogator will not have 
more than 70 per cent. chance of making the right 
identification after five minutes of questioning.”

– “The original question, ‘Can machines think?’ I believe 
to be too meaningless to deserve discussion.  Never-
theless I believe that at the end of the century the use 
of words and general educated opinion will have alter-
ed so much that one will be able to speak of machines 
thinking without expecting to be contradicted.”

186

“Thinking is a function of man’s immortal soul.  
God has given an immortal soul to every man and 
woman, but not to any other animal or to mach-
ines.  Hence no animal or machine can think.”
– Turing suggests it would be more persuasive to rank 

animals with people, and criticises the arbitrariness 
of religious views (e.g. that women don’t have souls).

– But suppose there are souls given by God – why 
shouldn’t He give one to a computer?

– Turing alludes to Galileo: as knowledge advances, 
religious dogmas can come to seem obsolete.

(1) The Theological Objection
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“The consequences of machines thinking would 
be too dreadful.  Let us hope and believe that they 
cannot do so.”
– Turing suggests that this concern, though “seldom 

expressed quite so openly”, often motivates those 
who are opposed to the idea of machine intelligence.

– We like to think that we are “superior to the rest of 
creation”, and “intellectual people ... value the power 
of thinking more highly than others”.

– “Consolation” is more appropriate than refutation: 
“perhaps ... in the transmigration of souls.”  Here 
Turing seems to be having fun, as Gandy suggested.

(2) The “Heads in the Sand” Objection

188

These objections are based on the results 
of “Gödel, … Church, Kleene, Rosser, and 
Turing” that demonstrate the limited power 
of “discrete-state machines”.

– They may fail on questions of the type:
“Consider the machine specified as follows ...  Will 
this machine ever answer ‘Yes’ to any question?”

– But humans also have limitations, and super-
iority over one particular machine is quite 
different from superiority over any machine.

(3) The Mathematical Objection

189

Turing quotes from Geoffrey Jefferson’s 
1949 “Lister Oration”:

– “Not until a machine can write a sonnet or compose 
a concerto because of thoughts and emotions felt, 
and not by the chance fall of symbols, could we 
agree that machine equals brain – that is, not only 
write it but know that it had written it.”

– “No mechanism could feel (and not merely artificially 
signal, an easy contrivance) pleasure at its success-
es, grief when its valves fuse, be made miserable ..., 
be charmed ..., be angry or depressed ...”

(4) The Argument from Consciousness

190

Turing’s answer to Jefferson starts with 
some amusing (but dubious) rhetoric:

“This argument appears to be a denial of the 
validity of our test.  According to the most extreme 
form of this view ... the only way to know that 
[either a machine or] a man thinks is to be that 
particular man.  It is in fact the solipsist point of 
view.  It may be the most logical view to hold but it 
makes communication of ideas difficult.  A is liable 
to believe ‘A thinks but B does not’ ...  Instead of 
arguing continually over this point it is usual to 
have the polite convention that everyone thinks.” 

Turing’s Response to Jefferson

191

Turing goes on to give his viva voce example 
about the sonnet (picking up on Jefferson’s 
reference to sonnet composition):

– “What would ... Jefferson say if the sonnet-writing 
machine was able to answer like this in the viva-
voce?  I do not know whether he would regard 
the machine as ‘merely artificially signalling’ these 
answers, but if the answers were as satisfactory 
and sustained as in the above passage I do not 
think he would describe it as ‘an easy 
contrivance’.  …  In short, then, I think that most 
of those who support the argument from 
consciousness could be persuaded to abandon it 
rather than be forced into the solipsist position.”

192

Interrogator:  In the first line of your sonnet which reads 
“Shall I compare thee to a summer’s day”, would not “a 
spring day” do as well or better?

Witness:  It wouldn’t scan.

How about “a winter’s day”?  That would scan all right.

Yes, but nobody wants to be compared to a winter’s day.

Would you say Mr. Pickwick reminded you of Christmas?

In a way.

Yet Christmas is a winter’s day, and I do not think Mr. 
Pickwick would mind the comparison.

I don’t think you’re serious.  By a winter’s day one means 
a typical winter’s day, rather than a special one like 
Christmas.
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There are two quite different lines of thought 
here, which Turing would have done well to 
distinguish:

– Jefferson is “denying the validity” of the Turing 
test because it does not test for genuine 
consciousness, and genuine consciousness 
(rather than “artificial signalling”) is necessary 
for intelligence.

– “Artificial signalling” of apparent emotions is 
unworthy of being deemed intelligent because it 
is an “easy contrivance”.

Two Distinct Lines of Thought

194

Turing’s response to the second point (on the 
alleged “easy contrivance”) is much stronger 
than his response to the first (regarding 
consciousness, solipsism etc.).

He would have been better to say, after giving 
the sonnet example (and others):

– “if the answers were as satisfactory and sustained 
as in the above passage ... then there would be 
reason to call the machine ‘intelligent’ irrespective 
of whether or not it has genuine feelings.  
Intelligence need not require consciousness.”

A Better Response

195

A machine could not, allegedly, be kind, beautiful, 
friendly, have initiative, have a sense of humour, tell 
right from wrong, make mistakes, fall in love, enjoy 
strawberries and cream, learn from experience, use 
words properly, be the subject of its own thought, 
do something really new.

The limited machines of 1950 could not do these, 
but it requires argument to show than none could.

Several of these alleged limits seem just to take us 
back to the argument from consciousness. 

(5) Arguments from Various 
Disabilities

196

Turing remarks on the oddity of one objection:
– “The claim that ‘machines cannot make mistakes’ 

seems a curious one.  One is tempted to retort, 
‘Are they any the worse for that?’  ...”

He goes on to distinguish ‘errors of 
functioning’ from ‘errors of conclusion’:
– A machine could be programmed so that it 

functions so as to make errors in its conclusions, 
precisely to imitate a human more convincingly.

– But it still seems odd that Turing’s Test might 
count better performance against the machine!

Machines Can Make Mistakes

197

Turing quotes Ada Lovelace (1842, note G):
“[Charles Babbage’s] Analytical Engine has no 
pretentions to originate anything.  It can do 
whatever we know how to order it to perform”.

In response, Turing points out that:
– We are fallible, and can often surprised by the 

novel consequences of our actions, views, and 
the instructions that we give to machines;

– Claiming that we are creative in a special way 
leads back to the consciousness argument.

(6) Lady Lovelace’s Objection

198

To be fair to Ada Lovelace, we should note her 
visionary anticipation of computer creativity in 
her note A on Babbage’s Analytical Engine:

“The operating mechanism … might act upon other things 
besides number, were objects found whose mutual 
fundamental relations could be expressed by those of the 
abstract science of operations, and which should be also 
susceptible of adaptations to the action of the operating 
notation and mechanism of the engine. Supposing, for 
instance, that the fundamental relations of pitched sounds 
in the science of harmony and of musical composition 
were susceptible of such expression and adaptations, the 
engine might compose elaborate and scientific pieces of 
music of any degree of complexity or extent.”

https://www.fourmilab.ch/babbage/sketch.html
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“The nervous system is certainly not a discrete-
state machine.  A small error in the information 
about the size of a nervous impulse impinging 
on a neuron, may make a large difference to 
the size of the outgoing impulse.”

In response, Turing points out that a discrete-
state machine could mimic a continuous 
system sufficiently closely that a human would 
find it extremely hard to tell the difference.

(7) Argument from Continuity
in the Nervous System

200

Turing reduces this argument to:
“If each man had a definite set of rules of con-
duct by which he regulated his life he would be 
no better than a machine.  But there are no 
such rules, so men cannot be machines.”

– He points out that formally it is a fallacy
(R  M is not the same as M  R).

– Moreover it is hard to establish that we are not
in fact governed by “laws of behaviour” (to be 
distinguished from “rules of conduct”)

(8) The Argument from
Informality of Behaviour

201

Turing’s sympathy towards telepathy, clairvoy-
ance, precognition and psycho-kinesis might 
seem surprising: “the statistical evidence, at 
least for telepathy, is overwhelming”.
– Few would now agree with this, but Turing was 

apparently impressed with the work of J. B. Rhine 
(see Hodges’ biography, p. 416).

– Turing seems also to assume that if extra-sensory 
perception were possible, no machine could mimic 
this, so we might need a “telepathy-proof room”.

(9) The Argument from
Extra-Sensory Perception

202

Turing admits at the beginning of §7 that
– “I have no very convincing arguments of a 

positive nature to support my views.”

Since his view is centred on performance in 
the imitation game (i.e. the “Turing test”),
– “The only really satisfactory support that can 

be given for the view expressed at the 
beginning of §6, will be that provided by 
waiting for the end of the century and then 
doing the experiment.”

§7  Learning Machines

203

After a discussion of technological needs 
(storage of around 10 , speed around 1,000 
times faster than nerve cells), he focuses on 
the problem of programming a machine to 
play the game successfully.

The solution, he suggests, may be to try to 
simulate a baby’s mind rather than an adult’s, 
and provide it with the ability to learn.
– Here Turing’s discussion seems quite unrealistic, 

but he did not have the advantage of our further 
60 years of experience, which have shown how 
difficult it is to implement general learning systems 
to compete with the products of evolution.

204

One important point Turing makes here is that a 
learning machine is highly likely to behave in ways 
that its programmers could neither foresee nor 
understand, and also to make “mistakes”.  Trial and 
error learning, in particular, requires some element of 
randomness.

“Many people think that a very abstract activity, like 
the playing of chess” might be a good place to start in 
attempting to match human intelligence.

But perhaps instead “it is best to provide the machine 
with the best sense organs that money can buy, and 
then teach it to understand and speak English” so that 
it could then “follow the normal teaching of a child.”

On this uncertain note, the paper ends.
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In 1981, Ned Block attacked the Turing 
Test on the grounds that it can be passed 
by a mindless machine.
– His postulated machine, widely known as 

“Blockhead”, works by storing every possible 
“sensible” conversation of a given length, and 
choosing its responses accordingly.

– Something working so mindlessly, by a 
mechanism that involves no understanding, 
surely cannot be called intelligent, but it will 
always generate sensible conversation!

BlockHead

207

How many “sensible” conversations are there, 
involving 10 short sentences (average 10 
words) from each of the two participants?

Suppose on average each word is chosen 
from a limited menu of 100 choices.
– Number of conversations  100200 = 10400.

– The known universe contains around 1080 atoms.  
Replace each atom with a complete universe 
(making 10160 atoms).  Repeat three more times 
(10240, 10320, 10400) – that gets you to this number 
of conversations (and these are only short ones)!

A Reality Check

208

Imagine a system that exhibits some 
impressive behaviour.  In attributing 
intelligence to it, we could mean either:
– That behaviour is definitive of intelligence: 

anything that behaves like that is ipso facto
correctly described as “intelligent”.

– That behaviour provides strong evidence of 
intelligence, because it could only plausibly be 
generated by something with the capacity for 
sophisticated information processing (etc.).

An Important Distinction

209

Our “intuitive” judgements in response to 
Blockhead (etc.) suggest that our notion of 
intelligence involves not just impressive 
behaviour, but impressive behaviour 
generated “cleverly” with limited resources 
(e.g. of storage, information, and time).

– Note that in practice, the two come to the same 
thing.  Thought-experiments can float free of any 
plausible reality, but in practice, appropriately 
flexible and timely responses to a rapidly changing 
situation are achievable only by clever processing.

Intelligence and Resources

210

Consider the following thought-experiment:
“suppose that someone were to write a computer 
program of only around 50 lines of code (in a 
standard general programming language), which 
could play chess at a grandmaster level in real 
time.  Such a crude program could not possibly 
count as genuinely intelligent.  Hence grand-
master performance at chess is not a reliable proof 
even of intelligent chess-playing.”

The same argument can be made about any 
domain, so apparently we can never take 
expert performance as proving intelligence!
– But like Blockhead, this scenario isn’t remotely 

plausible, so we should refuse to be persuaded.
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“If you look at the history of philosophy, you see that all the 
great and influential stuff has been technically full of holes 
but utterly memorable and vivid. They are what I call 
‘intuition pumps’ — lovely thought experiments. Like Plato's 
cave, and Descartes's evil demon, and Hobbes' vision of the 
state of nature and the social contract, and even Kant's idea 
of the categorical imperative. I don't know of any 
philosopher who thinks any one of those is a logically sound 
argument for anything. But they're wonderful imagination 
grabbers, jungle gyms for the imagination. They structure 
the way you think about a problem. These are the real 
legacy of the history of philosophy.”

Daniel Dennett, in The Third Culture, ed. Brockman

Thought-Experiments as “Intuition Pumps”

212

The classical intuition pumps to which Dennett 
refers are designed to illuminate one thing – say 
the nature of the world, or the social order – by 
harnessing our familiar understanding of 
something else – shadows cast by a fire in a 
cave, or contracts between individuals.

– We are thus encouraged to see the one thing as 
relevantly similar to the other.

– Computer analogies can also work in this way, 
e.g. comparing the mind to a computer program, 
or religion to a computer virus (Dawkins).

But different analogies can easily suggest quite 
different conclusions …

213

John Searle’s famous thought-experiment 
involves a conversation conducted in written 
Chinese by means of cards posted into and 
out of a room with a single occupant:

– incoming cards express meaningful questions, 
written by a competent Chinese speaker;

– outgoing cards – written by the man within the 
room – provide meaningful and appropriate 
answers to those questions (such as might be 
produced by a competent and intelligent native 
speaker of Chinese).

Searle’s “Chinese Room”

214

But the man inside the room has no knowledge 
whatever of the Chinese language or of the 
semantics – the meaning or significance – of the 
symbols he is reading or writing.

Instead, he is generating his written “answers” 
by strictly applying rules based purely on the 
syntax – the shape and structure – of the 
“question” character strings that he receives, 
these rules being specified in books contained 
within the room.  Searle gives an example:

“Take a squiggle-squiggle sign out of basket 
number one and put it next to a squoggle-squoggle
sign from basket number two.”  (Searle 1984, p. 32)

215

This depiction of the scenario (from Wikimedia Commons) is 
hopelessly unrealistic, like a grandmaster chess program of 
only 50 lines.  Vladimir Mikulik has kindly created an image 
that far better captures the complexity of the situation …

216
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In the original version of the Chinese Room (in 
“Minds, Brains, and Programs”, Behavioral and 
Brain Sciences 3, 1980, pp. 417-24), questions 
are limited to testing the man’s comprehension 
of a fixed story written in Chinese.

In the more famous later version (in Minds, 
Brains & Science, 1984, p. 32), there is no 
such restriction: the questions can apparently 
be as varied as those in the Turing Test.
– This takes the required processing to a whole new 

level of sophistication (and implausibility!).

Chinese Variations

218

Clearly the man in the room does not 
understand Chinese, despite the fact that he is 
generating meaningful replies.

Searle draws the moral that:

– “Understanding a language, or indeed having mental 
states at all, involves more than just having a bunch 
of formal symbols.  It involves having an interpret-
ation, or a meaning attached to those symbols.  
[Computer] programs [like the rules followed by the 
man in the room] are purely formally specifiable – that 
is, they have no semantic content.” (1984, p. 33)

Searle’s Conclusion

219

Most of the time, Searle expresses his thesis as 
a denial of “intentionality” or “semantic content”.

But he also denies that digital machines can 
have “a mind”, “mental states”, “mental content”, 
“cognitive states”, or “cognitive processes”.

And he describes his argument as attacking the 
claim of “strong artificial intelligence”, that digital 
machines can “think” or have “consciousness”.

(For examples of these phrases, see Searle 
1980, p. 417; 1984, pp. 36-7; 2002 §I, p. 56.)

What Exactly is Searle Denying?

220

Searle is often interpreted as arguing that 
“machines cannot think”, but he accepts that we
are thinking “machines” (in the sense of physical 
things working according to natural laws).

When most cautious, he seems to be objecting to 
the idea that digital computers can have semantic 
(i.e. meaningful, genuinely intentional) states 
purely in virtue of following a symbolic algorithm.

– But he often seems to go significantly beyond this 
cautious interpretation (e.g. when addressing the 
“robot reply”, which we consider shortly).

The Cautious Interpretation

221

Many argue that, though the man in the room does 
not understand Chinese, the system of which he is 
a part does (as shown by its intelligent responses).

Searle rebuts this as follows:
“They argue that it is the whole system, including the 
room, the baskets full of symbols and the ledgers 
containing the programs and perhaps other items as 
well, taken as a totality, that understand Chinese.  But 
this is subject to exactly the same objection …  There is 
no way that the system can get from the syntax to the 
semantics.  I, as the central processing unit have no way 
of figuring out what any of these symbols means; but 
then neither does the whole system.”  (1984, p. 34)

The System Reply

222

Copeland (1993, §6.2) argues strongly that 
Searle’s rebuttal begs the question:

– As a matter of logic, the man’s lack of understanding 
does not prove that the system of which he is a part 
does not understand Chinese.  (Compare the silly 
argument: “Bill the cleaner has never sold pyjamas to 
Korea; therefore Bill’s company has never sold …”)

– If Searle aims to prove that symbol manipulation 
cannot produce understanding, he cannot appeal to 
this thesis to defend himself against the System Reply.

– The Chinese Room might retain force as an “intuition 
pump”, but it provides little force of argument here.

Copeland Presses the Attack
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Note again Searle’s main point, that the symbol 
processing performed by the man (or computer) 
in the room involves no semantic content or  
understanding of what the symbols signify.

A tempting response is to suggest that such 
content could be given if the system were 
embedded in the world: if it were responsive to 
physical sensors, and could cause a robot to act.

Searle replies that the man in the room has no 
understanding of any such inputs and outputs …

The Robot Reply

224

“As long as we suppose that the robot has only a 
computer for a brain then, even though it might 
behave exactly as if it understood Chinese, it 
would still have no way of getting from the syntax 
to the semantics of Chinese.  You can see this if 
you imagine that I am the computer.  Inside a 
room in the robot’s skull I shuffle symbols without 
knowing that some of them come in to me from 
television cameras attached to the robot’s head 
and others go out to move the robot’s arms and 
legs.  As long as all I have is a formal computer 
program, I have no way of attaching any meaning 
to any of the symbols.”

(Searle 1984, pp. 34-5)

225

We’ll return to this discussion in the last 
lecture, but for now, notice the intimate 
contrariety between Searle’s Chinese 
Room and the Turing test:

– Both thought-experiments postulate an 
algorithmic system capable of generating 
conversation that is indistinguishable in quality 
from that of an intelligent native speaker;

– But they draw opposite conclusions, by 
focusing on different aspects of the situation:

Searle versus Turing

226

Turing:  “Imagine a computer program that 
is able to converse like this …

... how could you possibly deny that it is 
genuinely intelligent?”

Searle:  “Imagine a computer program that 
conducts its conversation using crudely 
syntactic processes like this …

... how could you possibly claim that it is 
genuinely intelligent?”

Contrary Intuitions

227

As in the case of Blockhead, we can inject 
some realism by asking how plausible the 
two thought-experiments are in practice.

– The Chinese Room (especially in its later 
unrestricted version) is as wildly implausible as 
Blockhead, supposing sophisticated linguistic 
behaviour generated in real time by manually 
consulting books of rules contained within a 
room (with no scope for sensory input, real-time 
updating, or emotional reaction etc.).

– Turing’s predictions seem more realistic …

Back to Reality

228

“I believe that in about fifty years’ time it will be possible 
to programme computers, with a storage capacity of 
about 10 , to make them play the imitation game so 
well that an average interrogator will not have more 
than 70 per cent. chance of making the right 
identification after five minutes of questioning.”

“The original question, ‘Can machines think?’ I believe 
to be too meaningless to deserve discussion.  Never-
theless I believe that at the end of the century the use 
of words and general educated opinion will have alter-
ed so much that one will be able to speak of machines 
thinking without expecting to be contradicted.”

Turing’s Predictions from §6
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So by 2000 “one will be able to speak of machines 
thinking without expecting to be contradicted”.  And 
indeed by 2000 this conversation was plausible:

“Why is the computer taking so long to respond?”

“It’s thinking hard, because it’s realized that if it tries to 
defend against my attack by bringing its knight over to 
protect the king, I’ll be able to grab its pawn on the other 
side.  It’s displaying now that it assesses the position as 
better for me materially, but it’s predicting that it won’t be 
too badly off if it decides to let the pawn fall, so I think it 
must be expecting to get some activity to compensate.”

A Correct Prediction?

230

Turing’s other prediction is that by 2000:

“… it will be possible to programme computers … to 
make them play the imitation game so well that an 
average interrogator will not have more than 70 per 
cent. chance of making the right identification after 
five minutes of questioning.”

This again looks plausible in retrospect.  If 
sustained and systematic research effort had been 
directed towards this goal, it seems quite likely that 
it could have been achieved by 2000.

― However the prediction is plausible for a bad reason!

Another Plausible Prediction, but …

231

Turing’s words naturally suggest a criterion for 
progress towards machine intelligence, based on 
how well the program can fool an “average 
interrogator”, and for how long.

This has set the pattern for subsequent attempts 
at “passing the Turing Test” (as illustrated in the 
next slide), but this is highly regrettable, because

it turns out that fooling an average interrogator is 
relatively easy to achieve, but not by techniques 
that plausibly involve genuinely intelligent 
information processing.

… an Unreliable Criterion

232

233

In 1966, Joseph Weizenbaum published his 
ELIZA program and “DOCTOR” script, 
showing how very simple text manipulation 
could generate a plausible conversation.

– The “DOCTOR” plays the role of a Rogerian 
psycho-therapist, largely echoing what the 
human says, expressing sympathy etc., and 
asking gentle questions to elicit their feelings. 

– Computer responses are generated by making 
small changes to the human inputs, exchanging 
first- and second-person etc.

Weizenbaum’s ELIZA ELIZA in action

– Men are all alike. 

– IN WHAT WAY?

– They're always bugging us about something 
or other. 

– CAN YOU THINK OF A SPECIFIC 
EXAMPLE?

– Well, my boyfriend made me come here. 

– YOUR BOYFRIEND MADE YOU COME 
HERE?

– I need some help, that much seems certain. 

– WHAT WOULD IT MEAN TO YOU IF YOU 
GOT SOME HELP?

– Perhaps I could learn to get along with my 
mother

– TELL ME MORE ABOUT YOUR FAMILY.

229 230
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• My mother takes care of me. 

• WHO ELSE IN YOUR FAMILY TAKES 
CARE OF YOU?

• My father.

… 

• WHAT ELSE COMES TO YOUR MIND 
WHEN YOU THINK ABOUT YOUR 
FATHER?

• Bullies. 

• DOES THAT HAVE ANYTHING TO DO 
WITH THE FACT THAT YOUR 
BOYFRIEND MADE YOU COME 
HERE?

236

“… alike …” “IN WHAT WAY?”

“something or other” “FOR EXAMPLE?”

“My X” “YOUR X?”

“I need Y” “WHAT IF YOU GOT Y?”

“… my mother” “… YOUR FAMILY …”

“My mother …” “WHO ELSE …?”

<no matching pattern> “DOES THAT HAVE

ANYTHING TO DO WITH

YOUR X?”

Simple Patterns and Responses

237

Elizabeth: ELIZA’s Cleverer Sister

Elizabeth is an educational chatbot-creation 
system, an adaptation of ELIZA in which the 
various selection, substitution, and phrase 
storage mechanisms have been enhanced 
and generalised to increase both its 
flexibility and its potential adaptability.

– The system also incorporates analysis tables 
to show what processing has taken place, 
thus providing a learning tool.

– Elizabeth can be downloaded from:
www.philocomp.net/ai/elizabeth

238

Experimentation with chatbots (e.g. the 
ELIZA script available within Elizabeth) 
can quickly strengthen one’s impression 
that Searle is right: there is no semantics
here, only blind manipulation of syntax.

The script that runs “Eugene Goostman”, 
the chatbot that supposedly “passed the 
Turing Test” in 2014, follows the standard 
ELIZA-style pattern.  Faced with focused 
questioning, it soon reveals its stupidity …

Chatbots are NOT Intelligent!

239 240

Where do you live?

I am from Ukraine, from the city called Odessa. You might have heard about it.

I have. Were you there on May 2?

Was I? I would rather not talk about it if you don't mind. Wonna ask me 
something more?

I want to talk about this. Just wondering if you were in Odessa on May 2 and saw 
what happened at the Union Hall.

I think you can answer your question yourself because it is rhetorical. Could you 
tell me about your job, by the way?

I am a journalist.

Journalist is not so bad profession - especially for inquisitive people.

I am inquisitive. So did you see the fire at Union Hall on May 2?

What a stupid questions you ask! Did I forget it or you really haven't told me 
about the place you are from?

…

So, about that fire in Odessa on May 2: Did you see it?

Odessa is a very big city - a kind of "Babylon," because there are lots of nation-
alities living there - Ukrainians, Russians, Jews, Greeks and many many more.

Leonid Bershidsky, on BloombergView
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Chatbots (or chatterbots) can be genuinely 
useful learning tools, one lesson being how 
quickly one discovers their limitations!

But we can also benefit from our readiness 
to interpret their output as “intelligent” :
– Most people prefer to interact conversationally.

– Automated “help” systems can be useful even if 
their responses are pre-packaged.

– Chatbot methods can often succeed in eliciting 
and identifying relevant information quickly.

Uses for Chatbots
MRS Connections, Barbican London, 

22-24 March 2006

Using artificial 
intelligence as a 

data collection aid

Craig Kolb, Ask Afrika & Dr Peter Millican, Hertford College, Oxford University

Connecting with 
eLizabeth

243

Turing acknowledged that passing his Test 
wasn’t a necessary condition for intelligence.

But unless interpreted fairly rigorously, it’s not 
sufficient either, because it’s too easy to pass 
due to human lack of critical discernment!
– Much of our conversation is sloppy and careless;

– Hence we too easily interpret sloppy and careless 
conversation as indicative of intelligence.

It’s a shame Turing gave the impression that 
“better” performance in his Test gives a useful 
criterion of relative intelligence – it doesn’t!

The Problem with the Turing Test 

244

Implausible when interpreted as fooling “the 
average interrogator” for a modest time.

– This is achievable by ELIZA-style pretence and 
misdirection, rather than sophisticated and 
explicit processing of information.

More plausible as a sufficient condition for 
intelligence when interpreted more stringently 
(cf. Turing’s sonnet conversation).

– But then seems inappropriately demanding in 
terms of indistinguishability from a human.

The Turing Test – Verdict So Far

245

As we saw before (slide 176), Turing himself 
acknowledges that a machine might “think” in 
ways very different from a human.

Moreover mimicking “subcognitive” human 
responses is likely to be extremely difficult.
– Robert French (1990) suggests questions like: 

“Rate ‘Flugly’ as the name of a glamorous 
model or a cuddly toy.”

– But testing for indistinguishability of this sort – in 
tastes and instinctive reactions – seems 
inappropriate when testing for intelligence.

Rejecting Anthropocentrism

246

Perhaps a better form of test is one focused 
on revelation of information processing – in a 
teaching task – rather than deception.
– Enables focus on a specific domain, e.g. some 

aspect of chemistry, which is suitably deep with 
complex informational structures.

– No need to pretend, and no expectation of indist-
inguishability: the test is how well the system can 
teach the theory (e.g as well as a human?).

– Could provide seriously useful products, and also 
stimulate progress towards “intelligent” processing.

The Tutoring Test

241 242

243 244

245 246



Turing on Computability and Intelligence

Peter Millican, Hertford College, Oxford, Trinity Term 2018

Alan Turing on Computability 
and Intelligence

Peter Millican

Gilbert Ryle Fellow
and Professor of Philosophy

Hertford College, Oxford

Lecture 8
Searle versus Turing: 

Conclusion

248

Turing’s 50-year predictions in his 1950 
paper look plausible (slides 228-30).

However as a criterion of intelligence, his 
proposed Turing Test is very dubious:
– If interpreted generously (e.g. 70% success by 

an average interrogator after 5 minutes), it is 
undermined by the discovery that humans are 
easy to fool by chatbots (slides 231-40).

– If interpreted more strictly, it is too demanding: an 
intelligent system need not be designed to mimic 
human cultural reactions etc. (slides 243-5).

Summary on Turing So Far

249

Searle’s Chinese Room thought-experiment 
is wildly implausible in terms of practicality 
(slides 216, 227).
– As with “Blockhead”, this casts some doubt on 

our “intuitive” responses to it (cf. slides 207-10).

We have briefly noted two main objections, 
the “System Reply” and the “Robot Reply”:
– Searle’s answer to the System Reply seems to 

beg the question, as a matter of logic, but retains 
some intuitive appeal (slide 222).  We have yet to 
consider his answer to the Robot Reply.

Summary on Searle So Far

250

Imagine a computerised tutoring system which 
is capable of highly sophisticated information 
processing in a complex domain (slide 246).
– It operates not by pretence, but rather by genuine 

responsiveness to information structures, in ways 
that reflect how human experts would think.

Nevertheless, Searle will insist that the 
system’s processing is merely “syntactic”, with 
no genuine “semantics”.
– It has no real understanding of the domain – its 

“thought” cannot “reach out” to the real world.

An “Intelligent” Tutoring System?

251

Searle’s The Rediscovery of the Mind (1992, 
pp. 78-9) emphasises this distinction:

– Intrinsic intentionality involves “a real, intentional, 
mental state”, e.g. when I say “I am now thirsty”.

– As-if intentionality is metaphorical, for example if I 
say “My lawn is thirsty”.  The lawn has no 
genuine intentional states, but I am talking of it 
as-if-it-had-intentionality.

– “In French, ‘j’ai grand soif’ means ‘I am very 
thirsty” illustrates derived intentionality: derived 
from the intrinsic intentionality of language users.

Intrinsic/As-If/Derived Intentionality

252

First, we might accept that in our imagined 
tutoring system the processed information has 
no intrinsic, system-understood, semantics.
– But we might nevertheless consider the 

processing of the information to be “intelligent”.

– Searle seems to assume that intelligence requires 
intrinsic “semantics”, but this could be challenged.

Second, we can consider ways in which a 
computer system might perhaps achieve 
intrinsic “semantics” …

Two Responses to Searle
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Searle’s objection seems quite strong in respect of 
information processing about physical things (e.g. 
chemicals or trees): “surely”, we are inclined to say, 
“mere internal processing of formal symbols cannot 
genuinely constitute thought about real trees!”

But this isn’t so clear with thought about abstract 
entities such as numbers or chess positions, where 
apparently “intelligent” processing need not be 
responsive to the properties of concrete things like 
trees, but only to appropriate logical relations, which 
can apparently be represented formally.

Arithmetic and Abstract Games

254

Suppose we have a program
playing noughts-and-crosses
by calculating the best move
in every situation (analysing
all possible moves and recursively minimaxing).

Obviously the program isn’t aware, but its 
processing is appropriately responsive to the 
real logic of the game (e.g. how one position 
changes to another, how positional assessments 
are inherited through the game analysis tree).  
Shouldn’t that be enough for “intelligence”?

A Simple Example

255

Let us here put purely abstract thinking, e.g. 
about arithmetic and chess, to one side:

– It is extremely obscure how even we manage to 
make reference to, and think, about abstract 
entities (which neither appear to our senses, nor 
seem to have any direct causal impact on us).

– Searle’s main point puts us with the animals and 
against digital computers, and thought about 
physical things is far more central to his case.

– So rather than philosophy of mathematics, let us 
turn to something paradigmatically physical …

Avoiding Philosophy of Mathematics

256

Imagine a robotic crane, armed with appropri-
ate sensors and tools, which is programmed to 
cut down trees “intelligently” and effectively.
– It senses for itself which trees are suitable for 

chopping or pruning, and which are best left;

– It takes account of relevant conservation needs;

– It is responsive to physical obstructions and other 
difficulties, and real-time events as it works.

This robot’s internal states are responsive to 
physical things, and impact causally on them.

It’s a Lumberjack, and It’s OK?

257

Searle will still deny that the robotic crane’s 
internal states have “semantic content”:

– His response to the Robot Reply suggests we 
consider a “Chinese cabin” in the crane, fed with 
messages from the sensors written in Chinese 
characters, processed purely syntactically by the 
man inside, and resulting in Chinese messages to 
the crane’s motors – all of these messages being 
incomprehensible to him.

– But this response is only conclusive if Searle’s 
rebuttal to the System Reply works …

Searle’s Robot Response Again

258

Let us allow Searle that the man in the 
Chinese cabin has no “semantic” grasp of 
what is going on – no idea that he is 
controlling a robotic lumberjack crane.

– As Copeland insists, this does not imply that the 
system as a whole lacks “semantics” – that would 
require another argument.

– And it is plausible that the information processing 
of the crane system achieves “semantic content” 
through its relationship to the sensors and motors: 
the man’s unawareness of this is irrelevant.

Combining Robot and System Replies
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Searle will no doubt deny that the robotic 
lumberjack’s internal states have “semantic 
content”, despite having these real-world 
causal relations.  But what then do they lack?

Searle’s Chinese-style arguments suggest he 
thinks “understanding” in the sense of 
conscious awareness is the crucial factor.

(But note in passing that “understanding” is a 
very slippery word, that can itself be 
understood in a variety of different ways!)

What Do Machines Lack?

260

Searle seems clear that some animals 
have what digital computers lack:

“Visual and auditory experiences, tactile 
sensations, hunger, thirst, and sexual desire, and 
all caused by brain processes and they are 
realised in the structure of the brain, and they are 
all intentional phenomena.  … it is just a plain fact 
about biological evolution that it has produced 
certain sorts of biological systems, namely 
human and certain animal brains, that have 
subjective features.” 
Minds, Brains, and Science (1984), pp. 24-5, cf. 40-1

Do Animals Have What It Takes?

261

Elsewhere, Searle is more explicit on the 
relation between intentionality and conscious-
ness, while also recognising (what might 
otherwise seem a serious objection) that we 
can have unconscious “intentional states”:

“Only a being that could have conscious 
intentional states could have intentional states 
at all, and every unconscious intentional state 
is at least potentially conscious.”

Rediscovery of the Mind (1992), p. 132 

A Nuance: Potentially Conscious

262

I suggest that Searle is at risk of conflating 
two quite different things with his terms 
“semantic”, “intentionality” etc.:

– One notion is roughly that of internal symbols’ 
having objective significance, of representing
external things in some intrinsic way (rather than 
just being thought of by some other agent as 
having such representative significance).

– The other is that of internal symbols’ having 
subjective significance to the “agent” in question, 
and hence requiring (potential) consciousness.

The Vagueness of “Semantic”

263

The simplest way of opposing Searle is to 
draw a clear distinction between:
– Information processing and its characteristics.

– The extent to which that processing is conscious.

The former category could be divided further:

– Information processing which is embodied in such 
a way as to have direct “quasi-semantic” 
connections with the relevant subject-matter;

– Information processing which requires 
interpretation by some external agent.

How to Oppose Searle

264

Distinguished in this way, information 
processing can be:
– Conscious and embodied

Humans, animals

– Unconscious and embodied
The robotic lumberjack

– Unconscious and second-hand
Human use of “artificial intelligence” systems

Is there any good reason for restricting words 
such as “intelligence” to the first of these?

Three Categories of “Intelligence”?
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Recall Turing’s response to Jefferson at§6.4 
(slides 189-94). There he seems to accept that 
to support machine intelligence, he must take 
machine consciousness to be as reasonable as 
believing that other people are conscious:

“This argument [of Jefferson’s] appears to be a denial 
of the validity of our test.  According to the most 
extreme form of this view ... the only way to know that 
[either a machine or] a man thinks is to be that 
particular man.  It is in fact the solipsist point of view.  It 
may be the most logical view to hold but it makes 
communication of ideas difficult.  ...  it is usual to have 
the polite convention that everyone thinks.”

Reminder: Turing on Consciousness

266

Turing goes on to give his viva voce example 
about the sonnet:

“What would ... Jefferson say if the sonnet-writing 
machine was able to answer like this in the viva-
voce?  ... if the answers were as satisfactory and 
sustained as in the above passage ...”

But here – I suggested on slide 194 – Turing 
should have continued:

“... then there would be reason to call the 
machine ‘intelligent’ irrespective of whether or not 
it has genuine feelings.  Intelligent thinking need 
not require consciousness (nor even – contra 
Searle – potential consciousness).”

267

Most discussions of the Turing/Searle and 
related debates apparently proceed on the 
assumption that we should be seeking a verdict 
(supporting one side or the other) based on our 
current conceptual repertoire.  But science does 
not proceed like this, and nor – I suggest –
should philosophy, especially when our 
philosophical conundrums are prompted by new 
realities that challenge traditional boundaries.

(See also my paper, “The Philosophical Significance
of the Turing Machine and the Turing Test”, 2013)

Embracing Conceptual Change
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Recall Turing’s prediction from §6 of the 1950 paper:

“The original question, ‘Can machines think?’ I believe to 
be too meaningless to deserve discussion.  Nevertheless 
I believe that at the end of the century the use of words 
and general educated opinion will have altered so much 
that one will be able to speak of machines thinking 
without expecting to be contradicted.”

Turing thus anticipated alterations in “the use of 
words”, that is, evolution of our conceptual scheme.  
And indeed his own discoveries, deriving from his 
1936 paper, give excellent reason for favouring such 
evolution, in the direction of separating “intelligence” 
from consciousness.

Turing Predicts Conceptual Change
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A problem with “intuition pumps” is that they can 
tempt us into misleading or simplistic comparisons, 
based on familiar “intuitive” assumptions and 
drowning out unexpected differences.

Practical confrontation with new realities can be
far more vivid, and far more surprising, forcing us 
to seriously revise our thinking by making it 
impossible to ignore things that are unintuitive.

Major scientific progress has often involved such 
major novelties, bringing “paradigm shifts” and 
fundamentally new methods of explanation.

Real Novelty Beats Imagined Similarity

270

Luciano Floridi sees Turing’s as the fourth in a ser-
ies of conceptual revolutions concerning humanity’s 
“fundamental nature and role in the universe”:

“We are not immobile, at the centre of the universe 
(Copernicus); we are not unnaturally distinct and 
different from the rest of the animal world (Darwin); and 
we are far from being entirely transparent to ourselves 
(Freud). We are now slowly accepting the idea that we 
might be informational organisms among many agents 
(Turing) …” (2008, p. 651)

My own view focuses not on the nature of humanity, 
but on innovation in modes of explanation.

Floridi on Conceptual Revolutions
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Modes of Explanation (until 1600)

Purposive Design (God)
– Things in the world (e.g. animals, plants, 

minerals) take the form they do because they 
were designed to be that way.

Purposive Action (Aristotle)
– Things in general (humans, stones,

water, fire, planets etc.) behave as
they do because they are striving to
achieve some desired state, or to
avoid some abhorrent situation. 272

The Scientific Revolution (1609-87)

Mechanism (Galileo, Descartes)
– Physical objects move through inertia

and mechanical contact.  (Only human
behaviour is governed by reason.)

Mathematical Instrumentalism (Newton)
– The action of gravity is not intelligible

to us in the way that mechanism is,
but we can predict its effects
mathematically, in terms of forces
that generate acceleration.

273

The Naturalistic Turn (1739-1859)

Naturalist Psychology (Hume)
– Human behaviour is governed

more by emotions and imagination
than by reason: it is more “animal-
like” than “god-like”.

Evolution (Darwin, Wallace)
– Biological organisms take the form they do 

owing to inheritance of characteristics and 
competition for survival and reproduction.

274

Modern Physics (1905-30)

General Relativity (Einstein)
– Space and time are integrated, and matter 

affects their structure, “curving” space in a 
way that generates gravitational movement.

Quantum Mechanics (Bohr, Heisenberg)
– Phenomena are described in terms of 

interacting “wave functions”, which enable 
prediction but which cannot be understood as 
implying determinate underlying “states”.

275

Breaking Paradigms

Advances like Galileo’s, Darwin’s, and Einstein’s 
involve a fundamental change in our thinking:
– How we see our place in the universe (e.g. we are 

not at the centre; we are continuous with the 
animals rather than quite separate from them). 

– Our understanding of the possibilities of scientific 
explanation (e.g. through mathematical forces 
rather than strivings; or by inherited variation and 
selection rather than rational design; by curvature 
in space-time rather than Newtonian forces).

So it’s not surprising that these great advances 
were made by philosophically minded thinkers. 

Darwin, Einstein, and Hume
Darwin read Hume’s Enquiries, Essays, 
Natural History of Religion, History,
Dialogues, and biography.  Indeed he 
was reading and noting Hume on “the 
reason of animals” when he came up 
with his theory of evolution (1838-9).

Einstein said that “the critical reasoning 
required … [to question] … the absolute 
character of time … was decisively 
furthered … by David Hume’s writings”.  
“I studied [his] treatise on understanding 
… with eagerness and admiration 
shortly before finding relativity theory.”
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The Weirdness of Physics

Both Relativity and Quantum Mechanics 
illustrate how different the world can be from 
our “intuitive” understanding of things.

Alan Turing’s invention of formal computation 
led to more counter-intuitive discoveries:
– About the foundations of mathematics: there are 

some mathematical questions for which there is 
no possible method of solution.

– About the nature of “thinking” itself: we need to be 
open to the possibility of inanimate thought.

278

Turing’s Discovery (1936)

Information processing can be
understood in terms of symbolic
inputs and outputs, governed by
explicit and automatic processes
with a limited range of operations
(as defined by a “Turing machine”).

Hence information does not
presuppose an “understanding” mind.
– So since Turing, we are confronted with sophisticated 

information processing without conscious purpose, 
just as Darwin brought us sophisticated adaptation
without intentional design.

279

Words like “intelligent” acquired their meaning 
within a world which doesn’t include the problem 
cases on which we are focusing.  We are used to:

– Agents who apply their intelligence to the situation they 
understand themselves to be in, performing 
sophisticated processing of information in order to adapt 
their behaviour to achieve their own purposes.

– Inanimate objects with no purposes of their own, no 
understanding, no sophisticated information processing.

So what to do when we encounter an inanimate 
object that “intelligently” processes information?

Naïve Views about Intelligence
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Many of our concepts are open-textured
(Waismann’s term): it is not clear in advance 
how we would apply them to all possible cases.

This is particularly important in legal contexts:
– Suppose marriage is understood as being between 

a man and a woman only, in a society that never 
contemplates sex changes.  How should relevant 
laws apply when sex changes occur?

– Should inheritance rights apply to adopted children?

– Suppose Theseus’s ship has mooring rights in perp-
etuity … which ship has them? (Copeland, pp. 52-3)

Open-Texture

281

“Station Master says, Mum, as Cats is ‘Dogs’, and 
Rabbits is ‘Dogs’, and so’s Parrots; but this ’ere 
Tortis’ is a Insect, so there ain’t no charge for it!”

Punch, 6 March 1869, p. 96 282

Open texture cuts in two directions:
– We cannot expect our concepts to be prepared in 

advance for all new eventualities: they may have to 
be revised or “tuned” to new contexts (especially 
when major paradigms are breached).

– We needn’t accept any requirement, when retuning 
concepts, to make them immune to future revision: 
we don’t have to take all future possibilities – let 
alone all logical possibilities – into account.

So when revising our concepts, we have every 
right to ignore crazy thought-experiments!

Open-Texture and Plausibility
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Consider the way in which we think about 
intelligence in ordinary life …
– Typically subject-relative;

– A matter of degree, not all-or-nothing;

– Measured by performance, including flexibility,  
speed, and appropriateness of response to 
new requirements or new information;

– Not significantly correlated with “feeling” or 
“consciousness”: we don’t judge someone as 
more intelligent because they care more.

How Do We Judge Intelligence? Information Processing & Phenomenology

Suppose now we distinguish sophistication of 
information processing from phenomenology.

These can often come apart:

– Dogs can desire as strongly as we do (but that 
doesn’t make us judge them as intelligent);

– Experts are often less “conscious” than novices;

– Our intuitive judgements of what is “easy” are 
often badly wrong (compare arithmetic with 
running and catching a ball).

Can Machines be Intelligent?

If we do distinguish sophistication of information 
processing from phenomenology, then it’s clear 
that intelligence is far more a measure of the 
former than the latter.

In our new world of unconscious – but highly 
sophisticated – information processors, it makes 
sense to allow our concept of “intelligence” to 
evolve accordingly.

So Turing’s main claim in his 1950 paper is 
substantially vindicated (even though the Test he 
proposed to support it is extremely dubious)!

286

As we saw, Turing himself fails to distinguish 
information processing from phenomenology, and 
resorts to a comparison with solipsism.
– But denying “phenomenal consciousness” to a computer 

or robot, no matter how sophisticated its behaviour may 
be,  is not on the same level as denying it to another 
human being …

– We know (at least in outline) the explanation for the 
robot’s behaviour, and it involves following a program 
etc.; nothing to do with consciousness.

– We have excellent reason, however, to think that other 
humans function biologically in broadly the same way as 
we do, with consciousness playing an important causal 
role, even if we can’t understand how it operates!

Turing’s Solipsistic Mistake

287

The phenomenal reality of consciousness 
strongly suggests that it is something causally 
active, not just an abstraction of information 
processing patterns or functional role.
– Its evolutionary role, however, seems mysterious: 

“zombies” lacking consciousness but behaving 
exactly like us would be just as successful.

– Nevertheless the close correlation between 
consciousness (e.g. of pleasures and pains) and 
factors affecting our wellbeing is overwhelming 
evidence that consciousness is indeed causally 
active, not just an “epiphenomenon”.

Consciousness and its Role

288

Consciousness could only evolve in a way that is 
so well-tuned to our needs if it is indeed causally 
active, even if we are unable to work out how.
– Evolutionary theory is well understood and supported 

by overwhelming empirical evidence.  Strong scientific 
evidence trumps armchair speculation!

We humans are all products of the same evolved 
biological processes.  So even if we cannot work 
out how consciousness arises, we have very 
good reason to attribute it to each other.
– But there is no such reason to attribute it to computers.

Dismissing Human Solipsism
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Playing infallibly requires a reliable method for 
assessing the “value” of any position (+1=winning; 
0=drawing; -1=losing).

Here it’s Red’s turn to move:
– It’s a “6-space-position” (let’s

say “6-position” for short).

– After Red makes her move, Blue
will be faced with a 5-position in
which to make his reply.

– Suppose there is a method for
calculating the value (to Blue) of any 5-position: how 
can Red use this now to work out her best move?

Appendix: Noughts-And-Crosses
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If RED moves 
here, BLUE 
should lose

(position has 
Blue value -1)

If RED moves 
here, BLUE 
should lose

(position has 
Blue value -1)

If RED moves 
here, BLUE 
should win

(position has 
Blue value +1)

If RED moves 
here, BLUE 
should win

(position has 
Blue value +1)

If RED moves 
here, BLUE 
should draw
(position has 
Blue value 0)

If RED moves 
here, BLUE 
should draw
(position has 
Blue value 0)

Best moves
for Red, since 
these yield the 
5-positions that 
have the lowest 
value for Blue
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Red winning = Blue losing (and vice-versa).
– So the value of a position to Red is the inverse of its 

value to Blue (e.g. -1 as opposed to +1).

– Hence Red tries to find moves which maximise the 
value to her, and minimise the value to Blue.

– Red, faced with a 6-position, chooses the move 
which produces the 5-position which is worst (or 
equal-worst) for Blue.

OK, but how does she work that out?
– Answer: by going on to search through the relevant 

5-positions (viewed from Blue’s point of view) … 

“Minimaxing”
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Consider the Red move bottom
centre.  Now it would be Blue’s
turn to move:
– It’s a 5-position.

– After Blue makes his move, Red
will be faced with a 4-position in
which to make her reply.

– Suppose there is a method for calculating the value (to 
Red) of any 4-position: how can Blue use this 
information to work out his best move in this position?

– Answer: search through the 4-positions, and choose 
the one which is worst from Red’s point of view.

Similar problem, a move later …
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We have seen how to evaluate a 6-position if 
we can evaluate a 5-position,
– … and in the same way we can evaluate a 5-

position if we can evaluate a 4-position,

– … and a 4-position if we can evaluate a 3-position, 
and a 3-position if we can evaluate a 2-position, 
and a 2-position if we can evaluate a 1-position, 
and a 1-position if we can evaluate a 0-position!

The only other thing we need is to be able to 
recognise a FINAL position as winning for 
Red, winning for Blue, or drawn.

The Magic of Recursion
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So to evaluate a position with X to move:
– Has X already lost (because the opponent has a 

line of three)?  If so, its X-value is -1.

– Is the position full up (with all nine spaces filled)?  
If so, its X-value is 0.

– If neither of these, then construct in turn all of the 
positions (with Y to move) that can arise from the 
current position (i.e. try out in turn all of X’s 
possible moves in the current position) …

Evaluate each of these new positions from Y’s point 
of view (resulting in evaluations Y1, Y2, and Y3, say), 
and then assign – as X-value of the current position 
– the inverse of the lowest of Y1, Y2, and Y3.

Choose the move with the best X-evaluation.
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